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Abstract. An analytic approach is presented for the nonlinear dynamic buckling of
imperfection sensitive nonconservative discrete dissipative systems under partial
follower loading in the domain of divergence. These systems under static loading lose
their stability via a limit point. The analysis is confined to that region of divergence
where the asymmetric stiffness matrices of perfect bifurcational systems are
characterized by a full set of eigenvectors with corresponding postbuckling paths
independent of each other. Thus, these systems behave dynamically like symmetric
dissipative systems under conservative loading which exhibit either a point of attractor
or dynamic buckling. The total potential energy criterion for dynamic buckling of
conservative systems is no longer valid. Instead of this, an energy-balance equation is
established that allows to determine approximate dynamic buckling loads, very good
for structural design purposes, as well as lower/upper bound buckling estimates, which
are readily obtained without solving the highly nonlinear initial-value problem.
Comparisons of numerical results with those of other analyses obtained via numerical
simulation show the reliability of the proposed approach.

1. INTRODUCTION

The dynamic response of nonconservative (asymmetric) systems under partial
follower loading according to linear analyses is similar to that of the associated
conservative (symmetric) systems when the asymmetric stiffness matrices are
symmetrizable [3]. However, this is not always true, since a limit cycle response of
autonomous nonconservative (asymmetric) dissipative systems may occur in regions of
existence of adjacent equilibria [4,5]. More specifically, it was shown that Ziegler's
model under partial follower load exhibits in a certain region of divergence one
postbuckling path passing through the 1st and 2nd branching points due to which a
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periodic attractor may occur, although its stiffness matrix is symmetrizable with distinct
eigenvalues and a complete set of eigenvectors. A limit cycle response in a region of
divergence was also found by Bolotin et al (1995) using a flat panel model. In a recent
work [6] the conditions were established under which nonconservative (asymmetric)
dissipative systems with symmetrizable asymmetric matrices and a full set of
eigenvectors may exhibit a limit cycle response which is ruled out for symmetric systems
(under conservative loading). It was also found that the above nonconservative systems
behave dynamically like the associated conservative (symmetric) systems in a region of
existence of adjacent equilibria where all postbuckling paths (corresponding to the full set
of the stiffness matrix eigenvectors) are independent of each other. This region
corresponds to a certain interval of values of the follower loading parameter which
defines the degree of nonconservativeness.

This study deals with the nonlinear dynamic buckling of imperfections sensitive
nonconservative dissipative systems under partial follower loading which lose their static
stability via a limit point. These systems are generated from perfect bifurcational systems
with trivial fundamental paths associated with asymmetric stiffness matrices with distinct
eigenvalues and a full set of eigenvectors with corresponding postbuckling paths
independent of each other. The dynamic behavior of the last systems in a certain domain
of divergence is similar to that of conservative (symmetric) dissipative systems which
exhibit either a point attractor or dynamic buckling (escaped motion). A major difficulty
for extending the energy, geometrical and topological concepts associated with the
dynamic buckling of conservative dissipative systems to the case of the above
nonconservative systems is the lack of a potential loading. The total potential energy
criterion [7] is no longer valid. However, this shortcoming is circumvented via the
establishment of an energy-balance equation which, along with the equilibrium equations,
permits to determine the saddle through which (or its neighborhood) dynamic buckling
occurs. Then, approximate dynamic buckling loads for vanishing and non-zero damping,
very accurate for structural design purposes, as well as lower/upper bound buckling
estimates are readily established without integrating the systems of highly nonlinear
equations of motion. Comparisons of a variety of existing results with those of the
present work show the reliability of the proposed readily employed approach.

2. PROBLEM DESCRIPTION AND BASIC EQUATIONS

Consider a general n-degree-of-freedom nonlinear structural system, whose static
response is governed by the set of nonlinear algebraic equations

),...,2,1(          );;( niqV ii =ηλ (1)

where qi are n generalized coordinates, λ a partial follower (non-potential) loading and η
a loading parameter defining the degree of nonconservativeness of the system. For a
certain value of η, say η = ηc, the external loading becomes conservative (potential
loading). The validity of eqs (1) presupposes that the range of variation of η is such that
adjacent equilibria exist. We postulate that Vi(qi;λ;η) are real analytic functions of qi, η
and λ, at least in the domain of interest. For a fixed value of η the sets of equilibrium
states satisfying eqs (1) represent one-dimensional manifolds [in the (n+l)-dimensional
load-displacement space spanned by λ and qi], called equilibrium paths which are
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assumed single-valued (in the domain of interest). One can also assume that one of these
paths, )(λF

ii qq = , defines a fundamental equilibrium path which is initially stable; that
is, all the Jacobian eigenvalues evaluated at any of its equilibrium states E have negative
real parts. Then, using the implicit function theorem it is deduced that this path,

)(λF
ii qq = , is unique passing through point E which is stable in its neighborhood (local

stability).
The components of the non-potential loading associated with eqs (1), Qi=Qi(qi;λ;η),

are nonlinear functions of qi and η, but linear functions of λ, i.e );( ηλ iii qQQ = . Denoting
by U = U(qi) the positive definite function of the strain energy, eqs (1) can also be written
as follows

),...,1(          0);()();;( niqQ-q=UqV iiiii ==ηληλ (2)

where Ui=∂U/∂qi. Thus, if [Vij]=[∂Vi/∂qi] (i,j=1,...,n) is the stiffness matrix, the buckling
equation is given by

 0]det[ =ijV (3)

from which one can obtain, at most, n distinct buckling loads. By virtue of eq. (2) one can
also get

),...,1,(     0][][][ njiQUV ijijij ==−= λ (4)

where ][][ 2
jiij qqU/U ∂∂∂=  and ][][ jiij q/QQ ∂∂= are square matrices of dimension n x n.

Note that ][ ijU is a symmetric (positive definite) matrix, while ][ ijQ and ][ ijV are
asymmetric matrices.

The boundary between divergence (static) and flutter (dynamic) instability for
geometrically perfect nonconservative systems with trivial fundamental paths ( 0=F

iq
for all i ) corresponds to a certain value of η, η = η0, which can be readily established
using a linear (local) analysis [9,5]. Hence, the region of existence of adjacent equilibria
(region of divergence) according to linear analyses is defined by ηc≥η≥η0; thus for η<η0

adjacent equilibria do not exist. However, as was shown recently, in the vicinity of η0 and
on the side of existence of adjacent equilibria a limit cycle response may occur under
certain conditions [4,5,6]. In these analyses it was found, with the aid of a cantilever
model under a partial follower load, that the above phenomenon of existence of limit
cycles may occur for η1≥η≥η0, where η1=0.50, although the asymmetric stiffness matrix
[Vij] is symmetrizable associated with distinct eigenvalues and a complete set of
corresponding eigenvectors [3]. From the last analyses of Kounadis and associates it was
also established that the postbuckling paths corresponding to the full set of eigenvectors
are not independent of each other in the above region. However, for ηc≥η≥50 all post-
buckling paths are independent of each other; a fact due to which a limit cycle response is
ruled out.

Perfect bifurcational nonconservative systems with trivial fundamental paths under
partial follower loading defined by ηc≥η≥η1 =0.50 may be analysed using either a static
or a dynamic analysis, since both methods yield the same critical (bifurcational) load,
irrespective of the mass distribution and amount of damping. These systems have a
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dynamic behavior similar to that of the corresponding conservative (symmetic) systems.
In this work attention is focused on imperfection sensitive systems which are

generated from the above bifurcational nonconservative systems (defined by ηc≥η≥0.50).
These systems lose their static stability via a limit point. From Fig.1 one can see a typical
nonlinear equilibrium path in the load-displacement space. A lot of numerical results of
various studies [8,4] have shown that the limit point load λS is always higher than the
critical load obtained via a dynamic analysis (which is appreciably affected by the mass
distribution and the amount of damping). The numerical results of the aforementioned
studies will be verified by the qualitative dynamic approach that follows.

Fig.1. Typical nonlinear equilibrium path of an imperfection sensitive system under
follower loading.

3.DYNAMIC ANALYSIS

The dynamic response of the above n-degree-of-freedom imperfection sensitive
system with nonconservativeness parameter ηc≥η≥0.50, after inclusion of small viscous
damping forces, can be described by the following autonomous differential equations of
motion in dimensionless form

( )niQ
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q
K

q
K

t i
iiii
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∂
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∂
∂
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where the dots denote differentiation with respect to time, t; jiij qqaK )2/1(= is the
positive definite function of the total kinetic energy with diagonal elements being
functions of masses [i.e. aii=aii(mi) i=1,...,n]; and non-diagonal elements that are functions
of mi and qi  [i.e. aij=aij (mi,qi) for i≠j, i,j=1,...,n]; jiij qqcF )2/1(= is a (positive definite)
dissipation function with coefficients cij which could be function of qi [i.e. cij=cij(qi) with
i,j=l,...,n]; U=U(qi) and ii QQ λ= have been defined above.

The lack of potential for the above type of loading constitutes a serious difficulty for
establishing a qualitative dynamic buckling analysis similar to that holding for
conservative (potential) loads [7]. The total potential energy criterion for the dynamic
buckling of conservative systems is no longer valid. The powerful energy criteria for the
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static stability (or instability) of equilibria which are associated with total potential
energy functions do not exist. The asymptotically stable equilibria (attractors) on the
fundamental path and the unstable equilibria (saddles) on the unstable post-buckling path
are defined now on the basis of a local dynamic analysis associated with the nature of
Jacobian eigenvalues. All eigenvalues of an asymptotically stable equilibrium are
complex conjugate with negative real parts, while in case of a saddle at least one pair of
complex-conjugate eigenvalues has positive real part. From the numerical results of the
aforementioned studies it was detected that above a certain level of the loading λ
(sufficiently less than λS) the corresponding equilibria up to the limit point S, although
locally asymptotically stable, are globally unstable. Global stability (instability) is related
to the boundedness (unboundedhess) of solutions of eqs (5). As was already defined [7]
unboundedness of solution means dynamic buckling (escaped motion). Subsequently, we
will try via a qualitative analysis [without actually solving the highly nonlinear systems
of differential eqs (5)] to determine the corresponding to the lower load λ stable
equilibrium ),...,( E

n
E
i

E qqq which ceases to be globally asymptotically stable. This will be
facilitated with the aid of an energy-balance equation as will shown below.

Writing eqs (5) for i=1,2,...,n, multiplying all of these equations respectively by
,,...,, 21 nqqq integrating with respect to time t and summing up the resulting equations, we

get the following energy-balance equation (including loss of energy)

∫∫ =−++
t

ii

t

CdtqQUFdtK
00

')(2 λ (6)

For a system initially (t=0) at rest for this type of (step) loading we may assume the
following conditions

0)0(  , )0( 0 == iii qqq (7)

due to which K(t=0) = U(t=0) = 0 (8)
and hence C = 0.

For the above nonlinear nonconservative autonomous dissipative system it is assumed
that during any interval of time, i.e. from t1 to t2, the energy transferred to the system by a
conservative process depends only on the state of the system at t1 and t2, whereas the
nonconservative energy transfer is dependent on the entire path between these two states.
The total work supplied to the system up to time t is represented by the last integral in the
LHS of eq. (6). One should also notice that velocity-dependent forces not only provide
for energy dissipation (being an energy sink) but also control the magnitude of the work
done by nonconservative forces by affecting the phase difference among the various
degrees of freedom. Thus, the omission of damping (which is always present in actual
systems), in case of systems under follower loading may lead to serious errors.

In view of eq.(8) one can write

0'2
0

=++ ∫
t

VFdtK (9)

where
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∫ ∑ 
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Since K and F are positive definite functions, eq. (9) implies that throughout the motion

V < 0 (11)

Given that dynamic buckling is associated with an escaped solution, it is
clear that dynamic buckling cannot occur when V > O.
Setting

)1(         , 1 ,...,ni=qyqy inii == + (12)

the above initial-value problem can be written in matrix-vector form as follows
0)0(  , );,( ytyyYy === ηλ (13)

where y = (y1,...,y2n)T is the state vector continuously dependent on t and λ with T
denoting transpose; Y = (Y1,...,Y2n)T is a nonlinear smooth vector-function which is
assumed to satisfy the Lipschitz condition in the domain of interest. Numerical results
obtained on the basis of the qualitative analysis proposed herein are checked by solving
the nonlinear initial-value problem of eqs (13) with the aid of a variant of the Runge-
Kutta scheme.

The equilibrium (singular) states yE are obtained by

0 );;,( 0 =yyY E ηλ (14)

Note that eqs (1) due to conditions (7) become

0 );,( 0 =iii qqV λ (15)
which are equivalent to eq. (14).

4. DYNAMIC BUCKLING CRITERIA

Using the stability criterion of Laplace or Lagrange (boundedness of solution),
dynamic buckling is defined as that state for which an escaped motion leads either to an
unbounded motion (overflow) or to a large response associated with a remote stable
equilibrium (point attractor). The minimum load corresponding to that state is defined as
the dynamic buckling load ) λDD. For loads smaller than λDD, in view of the above
assumptions, the motion is captured by the (asymptotically) stable equilibria of the
fundamental equilibrium path.

It is established below that dynamic buckling (escaped motion) of this non-potential
system takes place via a saddle E

Dy or its neighborhood (for more than one degrees of
freedom systems) of the unstable postbuckling path as this occurs in potential systems
[7]. For more than one degrees of freedom systems there are also more than one
trajectories leading to the saddle. This implies practically passage of the escaped
trajectory rather through the neighborhood of the saddle where V ≅  0 than through the
saddle itself. Recall also that a saddle is characterized by stable and unstable manifolds S
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and U  tangent at yE0 to the stable and unstable subspaces ES and EU of the linearised
system obtained from eq. (13); namely, subspaces having Jacobian eigenvalues with
negative and positive real parts, respectively. The first ones are associated with inset
(stable) manifolds capturing the motion (attractors), while the second with outset
(unstable) manifolds sending away the motion (repellors). This saddle due to condition
(9) or (11) is also associated with the following constraint

0);;,( 0 =yyV ηλ (16)

where in this case T
1 ),...,( nyyy = and T00

1
0 ),...,( nyyy = .

Indeed, since the total kinetic energy K of the above autonomous dissipative system is
always positive (i.e. K>0) throughout the motion (including the case of an escaped
motion), then via condition (9) we get inequality (11) or (16). Therefore, there is no
motion if V(y,λ;η;y0)=0. The quantity V for fixed λ becomes minimum at the equilibrium
yE [i.e.minV=V(yE,λ;η;y0)=0] of fundamental equilibrium path which by assumption is
(locally) asymptotically stable. Then, due to eq. (9) K becomes maximum at yE. The
maximum value of V(y,λ;η;y0)=0  for a system in motion in case of vanishing but non-
zero damping (i.e. [cij]→0) corresponds to the limiting case V(y,λ;η;y0)=0   which due to
eq. (9) yields also K=0. Since K is throughout the motion a positive definite function the
last case for which K becomes minimum (i.e. K=0) occurs when all generalized velocities
(associated with K) become zero and hence V=0. However, as will be shown below the
escaped trajectory practically passes rather through the neighborhood of the saddle (with
very small negative V), than the saddle itself. Then, the phase-point is associated with

−→ 0 );;,( 0yyV E
D ηλ (17)

Clearly, both equilibria yE and yD correspond to the same λ.
The system for small λ, (smaller than the dynamic buckling load) undergoes nonlinear

oscillations about the corresponding asymptotically stable equilibrium position yE (of the
fundamental path) with bounded amplitude

( )   ),...,1(       with    

2/1

1

2 ni-y=yxt E
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n

i
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=

ξξ (18)

which diminishes gradually with time for scleronomic definite dissipative systems [5]
until the system comes to rest (at the asymptotically stable equilibrium position yE). As
the system goes away from yE [where V(yE,λ;η;y0)=minV<0] then V(y,λ;η;y0) increases
becoming maximum at a certain non-equilibrium point, where V is in general negative
(with upper bound the limiting case V(yD,λ;η;y0)=0). At this point, for vanishing but non-
zero damping, due to the constraint (9), the kinetic energy K  becomes minimum, being in
general positive (with lower bound K=0). Immediately after that instant, the motion
changes sense being directed back to the state yE to which gradually it converges. Thus,
the asymptotically stable equilibrium state yE acts as a point attractor with a basin
(domain) of attraction whose boundary is formed by the union of all trajectories. As λ,
increases from zero there is an overall tendency of the basin boundary to approach the
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unstable postbuckling equilibrium path which is uniquely defined as physical
continuation of the fundamental or natural path. Note also that as λ increases the stable
and unstable equilibria corresponding to the same λ approach each other (coinciding at
the limit point). Consider now the case for which at a certain value of λ, there
corresponds an equilibrium state yE with a basin (of attraction) boundary which sooner or
later (depending on the hypersurface of V in the V-yi space) will touch the unstable
postbuckling equilibrium path at an equilibrium point where K=0; namely, at a saddle
point E

Dy where V=0. However, the escaped motion for more than one degrees of freedom
practically passes rather through the neighborhood of the saddle (with V→0−) than the
saddle itself. This is due to the fact that there are more than one trajectories leading to the
saddle point E

Dy . The more narrow and deep the escape channel with V≤0 the more
accurate the load Dλ

~ associated with V=0. The saddle point in certain directions acts as
point attractor [inset (stable) manifolds], while in other directions acts as repellor [outset
(unstable) manifolds]. After a competition of opposing forces corresponding to the
equilibrium points yE and E

Dy , during which the system undergoes nonlinear oscillations,
finally the motion will be captured by the attractive forces of the stable manifold of the
saddle. Thereafter the motion escapes via the outset manifold of the saddle point. This
sufficient criterion for dynamic buckling (escaped motion) is in agreement with
Liapunov's direct method for asymptotic stability in the large [2]. According to a variant
of this theorem as long as thedomain of attraction (or domain of stability) of the point yE

does not contain (inside or on its boundary) any other equilibrium point, then yE is stable
(asymptotically) in the large. When the basin boundary touches the unstable postbuckling
path at a saddle (or passes through its neighborhood with very small negative V) the
escaped motion is inevitable. Obviously, E

Dy  and the corresponding load Dλ
~  (for

vanishing damping) satisfy the following equations

,...n i
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yyV
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Clearly, in this case the equilibrium point yE on the fundamental equilibrium
path, although asymptotically stable locally (in the small), it is unstable globally (in the
large).

In case of non-vanishing damping eqs (19) due to condition (9) must be replaced by
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Since the integral in the RHS of eqs (20) cannot be evaluated in terms of elementary
functions, a good approximation of λDD can be obtained by means of upper and/or lower
bounds of the above integral with the aid of Schwarz's and Holder's inequality [see
Appendix]. Then, the first of eqs (20) is replaced by

jiij yycyyV
τ

ηλ 1);;,( 0 −< (21)



Dynamic Buckling of Imperfection Sensitive Nonconservaive Dissipative Systems... 197

where 0
i

E
ii yyy −= and τ is the duration of time from the onset of loading until dynamic

buckling (escape time). The simultaneous solution of eq. (21) and the equilibrium eqs
(19) yield a lower bound (dynamic buckling estimate) DDλ  which is sufficiently accurate
for structural design purposes. This is acceptable only if it corresponds to a saddle of the
unstable postbuckling path. Note that DDλ  is a lower bound if τ is known. Since usually
τ is unknown one can use as approximate value of τ the half period 0/ωπτ =  of the
linearized system, where ω0 is its fundamental circular frequency. Note that usually ττ <
for small damping as the degree of freedom increases [implying more irregular energy
surface V(y,λ;y0)]. Hence, DDλ is a good approximation of the exact dynamic buckling
load λDD. From the first of eqs (20) it follows that as damping increases V decreases,
while λDD  increases and the corresponding saddle approaches the limit point. Obviously,

Dλ
~  is a lower bound of λDD. Moreover since E

Dy  (corresponding to Dλ
~ ) belongs to the

unstable postbuckling path it is clear that the limit point λS is an upper bound of λDD; i.e.
SDDD λλλ <<

~ .
From the above development it is clear that when the boundary of the basin (domain)

of attraction of the point yE includes a saddle E
Dy  (by passing via it or its neighborhood

with V→0−) then an escaped motion (dynamic buckling) is initiated via the corresponding
saddle (or its neighborhood) with V→0−. This is a more general sufficient criterion for
dynamic buckling than the corresponding one valid for potential systems.

For the systems under discussion as a result of inclusion of damping it is guaranteed
by the theory of attractors that a wandering motion cannot be sustained indefinitely.
Eventually, the motion is led to a state of stable equilibrium or to dynamic buckling
(escaped motion). Moreover, it is clear that the foregoing criteria for dynamic buckling
are valid provided that damping is included even in case it is negligibly small.

It is worth noticing that even in case of vanishing damping (cij→0 for all i,j) unlike
conservative systems an "exact" evaluation of λDD is impossible for nonconservative
systems with more than one degrees of freedom. This is due to the fact that the integrals
in eq. (10), in general, cannot be analytically (in closed form) determined. However, this
is possible only for nonconservative systems with one degrees of freedom. For
nonconservative systems with more than one degrees of freedom one can seek
lower/upper bounds or approximate evaluations of the aforementioned integrals.

5. NUMERICAL RESULTS

The proposed approach is demonstrated with the aid of two models shown in Figs. 2
and 3 of one and two degrees of freedom, respectively.

Example 1

For the first model shown in Fig.2 Lagrange (dimensionless) equation of motion and
the associated initial conditions are
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where γ>0 must be determined so that the system loses its static stability via a limit point.

From the static equilibrium equation
( ) 0sin]1)[( 2

1 =Θ−−Θ−−Θ= ηλεγεV                (23)

it can be easily deduced that the critical load of the perfect system is equal to λC=1/η, and
moreover the corresponding critical point is an unstable symmetric branching point for
γ>η2/6. Hence, eqs (22) hold for γ>η2/6.

Multiplying the first of eq. (1) by Θ , integrating with respect to time and taking into
account the initial conditions (22) we get

( ) ( ) ( ) 0coscos'
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22
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This is the energy-balance equation corresponding to eq. (9). Eqs (19) for vanishing
damping are written as follows
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where γ>η2/6. From system (25) we obtain for given values of η, ε and γ the dynamic
buckling load DD λλ ≡

~  and the corresponding value DD Θ≡Θ~ . Numerical values of these

Fig.2. 0ne-degree-of-freedom
model under partial follower load.
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quantities as well as of the limit point load λS, and the corresponding angle ΘS, are given
in Table 1.

Table 1. Limit point and dynamic buckling load, λS and λD, with corresponding
displacements ΘS and ΘD  for ε=0.05 and various values of η  and γ.

η γ λS ΘS DD λλ ≡~
DD Θ≡Θ~

0.04 4.611180 0.9341848 4.5153482 1.4405886
0.06 4.548685 0.8026211 4.4392146 1.23313670.20
0.08 4.501248 0.7244886 4.3816202 1.1097532
0.04 3.701544 0.9707394 3.6269415 1.4958731
0.06 3.647977 0.8216447 3.5617775 1.26189110.25
0.08 3.608227 0.7367887 3.5135602 1.1283111
0.04 3.098769 1.0243329 3.0388795 1.5761090
0.06 3.049731 0.8475559 2.9793722 1.30083010.30
0.08 3.014532 0.7530267 2.9367372 1.1527081

The above values of λD and ΘD have been also computed via numerical integration using the
Runge-Kutta scheme. Hence λD and ΘD are exact values for a non-dissipative model.

If small damping is included one can adopt the procedure presented
by Kounadis and Raftoyiannis (1990).

Example 2

Consider the nonlinear two-degree-of-freedom, partially fixed, cantilever model
shown in Fig.3 for which many numerical results are available [4,5]. It consists of two
weightless rigid links of equal length l and carries two concentrated masses ml and m2 at
B and C (where ml/m2=m). The undeformed state is specified by the initial geometric
imperfections εl and ε2, while the deformed configuration by the angles Θl and Θ2 (all
measured from the vertical position with respect to the corresponding link axis).

Fig.3. Two-degree-of-freedom cantilever
model ABC under a partial follower

compressive load at its tip.
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Structural stiffness is provided by two nonlinear rotational springs (located at A and B)
associated with corresponding viscous dampers. The model is subjected to a partial
follower tip load λ acting at an angle ηΘ, where η defines the degree of
nonconservativeness. For η=l the loading (and the model) becomes conservative. As is
known the perfect model (εl=ε2=0) loses its static stability via divergence for 1≥η≥4/9
[5]. It was also established that the two postbuckling equilibrium paths are independent of
each other for 1≥η≥0.50, and hence a limit cycle response in this interval of values of η is
ruled out. For 0.50>η≥4/9 the two postbuckling paths are not independent of each other
and the model may exhibit various important phenomena (e.g. a limit cycle response, a
double zero eigenvalue, flutter before divergence etc).

In this investigation attention is focused on imperfect models with 1>η≥0.50. Then
the model is governed by the following Lagrange equations of motion,
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where
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clearly
)2,1(  0);();;;;,();;;;,( ==Θ−Θ=Θ= iQUVV iiiiiiiiiiiii ηλεγηδλεγηδλ (28)

are the nonlinear equilibrium equations with
22211 sin   , ])1(sin[ Θ=Θ−+Θ= ηη QQ (29)

while )21(   , ,i=U/=U ii Θ∂∂

Matrices ][ , jiQ  and ][ ijU  in eq. (4) have the following expressions
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Obviously, ][ , jiQ  is nonsingular if ( ) 21 1 Θ−+Θ η  and 2Θη  are different than π/2. In this
case the static buckling eq. (3) can also be written as
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0)]~det([ =− IUij λ (32)

where ][][]~[ 1
, ijjiij UQU −= and I is identity matrix. Since ][ ijU is always a positive definite

matrix and ][ , jiQ is an asymmetric nonsingular matrix ]~[ ijU is also asymmetric and
nonsingular. Then, one can obtain from eq. (32) two distinct static buckling (limit point)
loads S

)1(λ and S
)2(λ  for given values of  η, ε1, ε2, γi and δi (i=1,2). Evaluating (32) at the

critical state of the perfect system (ε1=ε2=Θ1=Θ2=0) we get
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Eq. (33) yields

0132 =+−
η

λλ (34)

from which we obtain the critical loads
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Fig. 4. One postbuckling equilibrium path (passing through the 1st and 2nd branching
point) for η=0.45.
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It has been established that the model for 0.50>η≥4/9 exhibits one postbuckling path
passing through the first and second branching point [5]. A typical example
corresponding to η=0.45 is shown in Fig. 4. In this region of existence of adjacent
equilibria (region of divergence) the model may exhibit a limit cycle response. A
pertinent example for η=0.45, 04.0*

1 =c , 10.0*
2 =c and cc

)2()1( 50.1 λλλ <=< is shown in
Fig. 5. In fig. 6 one can see the nonlinear equilibrium paths (natural and complementary),
λ vs Θi, i=1,2 for the first and second buckling modes for η=0.45. Moreover, for
1≥η≥0.50 the postbuckling paths are independent of each other and the model
experiences a dynamic behavior similar to symmetric conservative systems [6].
Therefore, the subsequent analysis holds for 1≥η≥0.50.

Fig.5. Phase-plane portrait associated with stable limit cycles for a model with
50.045.0 * =<= ηη , 04.0*

1 =c , 10.0*
2 =c , and CC

)2()1( 50.1 λλλ <=< where 3333.1)1( =Cλ

and 6666.1)2( =Cλ .

Multiplying the 1st and 2nd of eqs (26) by 1Θ  and 2Θ respectively, integrating with
respect to time and summing up the resulting equations we get the following energy-
balance equation [see eq. (6)]

CddFdUK =
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where K, U and F are given by
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Fig.6. Natural and complementary nonlinear equilibrium paths of the 1st and 2nd buckling
modes, λ vs Θi, i=1,2), for η=0.45.

Assuming that the model is initially (τ=0) at rest for this (step) type of loading we
have

)2,1(  , 0)0( , )0( ==Θ=Θ iiii ε (39)

which imply     K(τ=0)=U(τ=0)=0 and hence C=0 (40)

The energy-balance eq. (37), due to eq. (40), is given by eq. (9), where













Θ•Θ+ΘΘ−+Θ−= ∫∫
ττ

τητηλ
0

22

0

121 'sin'])1(sin[ ddUV (41)

Obviously, the integrand of the first of these two integrals is not an integrable function.
However, it can be approximated in various ways. For instance, after application of the
first mean-value theorem for integrals one can adopt the following approximation valid at
the instant of dynamic buckling (escaped motion).
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])1(sin[)('])1(sin[ 2111

0

121
ststDd Θ−+Θ−Θ≅ΘΘ−+Θ∫ ηετη

τ

(42)

where D
1Θ  corresponds to the saddle point (on the unstable postbuckling path) through

which (or its neighborhood) dynamic buckling occurs; st
1Θ and st

2Θ correspond to the
stable equilibrium point on the fundamental path associated with the same λ. Note that
for a  load λ slightly smaller than the dynamic buckling load, damped oscillations take
place around this stable equilibrium state.

Another approximation of the above integral which could also be adopted is the
following

])1(sin[))(1(                                         

])1(cos[])1(cos['])1(sin[
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DDd
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ηεη

ηεηετη
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(43)

By virtue of eqs (41) and (42) on one hand and of eqs (41) and (43) on the
other, we get the following approximations of V
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and
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(45)

For the case of vanishing damping (cij→0 for all i,j=1,2) eqs (19) with the aid of
equilibrium eqs (27) (V1=V2=0) and the above approximations of V (eqs [44] and [45])
lead to approximate values of Dλ

~ , D
1

~
Θ  and D

2
~
Θ  without solving the nonlinear initial-

value problem defined by eq. (26) and Θi(0)=εi, (i=1,2), 0)0( =Θi . Numerical values of
these quantities on the basis of this analysis and thereafter by using the Runge-Kutta
scheme are given in Tables 2 and 3 for various values of the parameters. Corresponding
values of limit point loads are also included in these Tables.

Clearly the results of both aproximations are very good, while those which are based
on eq.(44) are very close to the "exact" results which were also reported by Kounadis et
al [4].

Similar results can be seen in Table 3 in case of a system with a higher degree of
nonconservativeness (i.e. for η=0.60).

In case of non-zero damping one can use the approximate formula (21) along with
equilibrium eqs (27) (V1=V2=0). Table 4 shows how the numerical results for the system
of Table 3 are changed if small damping (with 01.0*

1 =c  and 05.0*
2 =c ) is included. In

this case the RHS of eq. (21) is given by

2
1122

*
22

11

*
1 )()(1 εε
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ττ
+Θ−−Θ+−Θ= DDD

jiij
cc

yyc (46)
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Table 2. Static, dynamic (obtained numerically) and dynamic (obtained analytically)
loads for a system with η=0.90, γ1=γ2=0, δ1=-2.50, δ2=-0.75, ε1=0.05, m=2, 0*

2
*
1 →= cc

and various values of ε2.
Dynamic buckling load

eq.(44)
Dynamic buckling load

eq.(45)
ε2 Static

buckling
load

Dynamic
buckling
load
numerically
obtained

Value Error(%) Value Error(%)

-0.030
-0.031
-0.0314
-0.0315
-0.032
-0.033
-0.034
-0.035

0.35359
0.35843
0.35993
0.36031
0.36226
0.36643
0.37103
0.37622

0.34361
0.34756
0.34922
0.34965
0.35181
0.35644
0.36153
0.36723

0.346954
0.350503
0.351988
0.352366
0.354294
0.358377
0.362817
0.367710

0.97
0.96
0.79
0.78
0.71
0.54
0.36
0.13

0.34104
0.34424
0.34556
0.34589
0.34758
0.35107
0.35474
0.35861

0.75
0.96
1.05
1.08
1.20
1.51
1.88
2.35

Table 3. Static, dynamic (obtained numerically) and dynamic (obtained analytically)
loads for a system with η=0.60, γ1=γ2=0, δ1=-2.50, δ2=-0.75, ε1=0.05, m=2, 0*

2
*
1 →= cc

and various values of ε2.
Dynamic buckling load

eq.(44)
Dynamic buckling load

eq.(45)
ε2 Static

buckling
load

Dynamic
buckling
load
numerically
obtained

Value Error(%) Value Error(%)

-0.030
-0.031
-0.032
-0.033
-0.034
-0.035
-0.040
-0.045
-0.050
-0.060

0.446565
0.447357
0.448155
0.448958
0.449766
0.450580
0.454734
0.459039
0.463504
0.472972

0.41463
0.41552
0.41641
0.41731
0.41822
0.41913
0.42378
0.42860
0.43359
0.444149

0.424115
0.424877
0.425642
0.426409
0.427180
0.427953
0.431860
0.435838
0.439886
0.448199

2.29
2.25
2.22
2.18
2.14
2.11
1.91
1.69
1.45
0.91

0.421875
0.422674
0.423475
0.424279
0.425086
0.425895
0.429974
0.434112
0.438305
0.446845

1.75
1.72
1.70
1.67
1.64
1.61
1.46
1.29
1.09
0.61

Table 4. Static, dynamic (obtained numerically) and dynamic (obtained analytically)
loads for a system with η=0.60, γ1=γ2=0, δ1=-2.50, δ2=-0.75, ε1=0.05, m=2, 01.0*

1 =c ,
05.0*

2 =c , and various values of ε2.
Dynamic buckling load

eq.(44)
Dynamic buckling load

eq.(45)
ε2 Static

buckling
load

Dynamic
buckling
load
numerically
obtained

Value Error(%) Value Error(%)

-0.030
-0.031
-0.032
-0.033
-0.034
-0.035
-0.040
-0.045
-0.050
-0.060

0.446565
0.447357
0.448155
0.448958
0.449766
0.450580
0.454734
0.459039
0.463504
0.472972

0.415513
0.416411
0.417315
0.418224
0.419140
0.420062
0.424771
0.429652
0.434717
0.445464

0.424577
0.425337
0.426099
0.426865
0.427633
0.428403
0.432299
0.436266
0.440304
0.448598

2.18
2.14
2.10
2.07
2.03
1.99
1.77
1.54
1.29
0.70

0.422573
0.423370
0.424168
0.424969
0.425772
0.426577
0.430641
0.434763
0.438942
0.447454

1.70
1.67
1.64
1.61
1.58
1.55
1.38
1.19
0.97
0.45
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Taking τ as the half fundamental period of the linearized undamped eqs (26) we find
τ=π/ω0. Then, one can easily get

2/1

4
2
220 45.0 













 −−= aaaω (47)

where )
60.0
1~

3
~

(30.0   , 
~

60.15.3 2
42 +−=−= DDD aa λλλ

In all cases considered in Table 4 approximations based on eqs (44) and (45) as well as
on eq. (46) give an error less than 2.18%.
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APPENDIX

For a function )(tX , integrable in the interval [τ0, τ], one can write the following
Schwarz's and Holder's inequality

( ) ( ) dttXdttXXX ∫∫ −≤=−
τ

τ

τ

τ

ττττ

99

2
0

2

2
0 )()()( (a)

In case that X(t)=(x1(t),...,xn(t))T inequality (a) becomes

dtXXdtxXX T
n

i
i

T ∫∑ ∫ −≤=
=

τ

τ

τ

τ

ττ

99

)( 0
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2

(b)

where )()( 0ττ XXX −= .
If the elements of the non-negative damping matrix [cij] are scalar quantities using
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relation (b) one can write

 )1(    ,..,ni,j=dtqqcqq
c

ji
o

ijji
ij ∫≤

τ

τ
(c)

where 0)( iii qqq −= τ  with )0(0
ii qq =

With the aid of eqs (12), eq.(a) and eq.(c), eqs 0);,();,( 00 == yyVyyV i λλ  become
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where 0
i

E
ii yyy −= with E

iy on the unstable path (saddle), while the summation
indices  i  and  j  range from 1 to n.

DINAMIČKO IZVIJANJE NEDOVOLJNO OSETLJIVOG
NEKONZERVATIVNOG DISIPATIVNOG SISTEMA POD

DEJSTVOM VODJENOG OPTEREĆENJA
Anthony N. Kounadis

Prikazan je analitički pristup nelinearnom dinamičkom izvijanju nedovoljno osetljivih
nekonzervativnih diskretnih disipativnih sistema izloženih dejstvu delimično vodjenog opterećenja
u oblasti divergencije. Ovi sistemi pod dejstvom statičkog opterećenja gube stabilnost kroz
graničnu tačku. Analiza je ograničena na oblast divergencije gde su matrice asimetrične krutosti
idealnih bifurkacionih sistema karakterisane potpunim skupom sopstvenih vektora sa
odgovarajućim medjusobno nezavisnim putanjama izvijanja. Tako, ovi sistemi se ponašaju
dinamički kao simetrični disipativni sistemi pod dejstvom konzervativnog opterećenja koje pokazuje
bilo tačku atraktora ili dinamičkog izvijanja. Kriterijum totalne potencijalne energije za dinamičko
izvijanje konzervativnih sistema više ne odgovara. Umesto njega, uspostavljena je jednačina
energijskog balansa koja dopušta da se odredi aproksimativno opterećenje dinamičkog izvijanja,
veoma dobra za namene projektovanja konstrukcija, kao i za predvidjanje donje/gornje granice
izvijanja, koja se lako dobija bez rešavanja problema sa izrazito nelinearnim početnim uslovima.
Poredjenje numeričkih rezultata sa dobijenim u drugim analizama numeričke simulacije pokazuje
valjanost izloženog pristupa.


