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Abstract. The propagation of longitudinal thermoelastic waves in a half-space caused
by mechanical influences is considered. One-dimensional dynamic problem of coupled
thermoelasticity is solved by using integral transforms. Exact and approximate
expressions for calculation of thermomechanical values at each point of a half-space
and at arbitrary moment of time are given. Qualitative and quantitative analyses of the
effects of damping and dispersion of thermoelastic waves is performed.

1. INTRODUCTION

In this paper we consider the propagation of thermoelastic waves in an infinite elastic
half-space caused by instantaneous (impulse) effect of pressure forces applied to its
boundary surface. Interaction between the field of deformation and the field of
temperature is taken into consideration. Thermoelastic waves caused by mechanical
influences have been rarely studied compared with waves caused by thermal influences.
Besides, the solutions in closed mathematical form can be rarely found because of the
complexity of the system of differential equations of the problem. The thermal
disturbance of the elastic layer caused by instantaneous pressure forces on its surface is
considered in ref. [1]. The limit values of the temperature, displacement, and stress are
determined for the case when the time increases to infinity. The case of propagation of
harmonic waves in infinite half-space is also considered, and it is shown the appearance
of damping and dispersion, but without discussion as to what changes the waves of
arbitrary form are exposed.
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2. THE BASIC EQUATIONS OF THE PROBLEM. THE BOUNDARY AND INITIAL CONDITIONS

The system of partial differential equations which describes the propagation of plane
thermoelastic waves for the coupled case in absence of internal heat sources is given in
the form [2], [3]:
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thermal intensity, λ is the heat conduction coefficient, cε is the specific heat at a constant
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= otTE  represents the coefficient which takes into consideration the influence

of speed of deformation on the change of temperature.
For the case of the action of pressure forces on the boundary x=0 of the half-space

x ≥ 0 , at the initial moment of time t=0, the boundary condition is

)(),( 0 tStx ox δσ ⋅−==  (3)

where: σ( , )x t is the component of stress tensor in x direction, δ( )t represents the Dirac
function, and So means the total impulse of instantaneous forces per unit of surface.

With the help of Duhamel-Neumann relations for stress [3], the boundary condition
(3) is reduced to displacement condition, that is
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The temperature θ, on the boundary x=0, is kept constant during thermokinetic
process, that is

0),( 0 ==xtxθ  (5)
The assumed initial conditions are:

0),(     ;0),( 00 == == tt txtxu θ  ,    for  0≥x  (6)

3. SOLVING OF DIFFERENTIAL EQUATIONS OF THE PROBLEM

The infinite Fourier cosine and sine transforms of functions u u x t= ( , ) and
θ θ= ( , )x t are given in the form [4], [5]:
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The Laplace transform is given by [6]
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Let us apply the transforms (7) and (8) to the system of equations (1) and (2), and to
the both boundary and initial conditions (4) and (5). By introducing the transforms of the
boundary and initial conditions into the transformed equations (1) and (2), a system of
algebraic equations can be obtained of which the solutions are:
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== is the coupling coefficient between the field of

temperature and the field of strain, for the plane state of strain. If we look at the
transforms *

cu and *
sθ  we can observe that the denominators in both terms are polynomials

of the third order, so the application of inverse transforms is complicated and impractical.
On the other hand, by neglecting the term pc 2)( ξε , inverse transforms can be found from
the tables of Laplace transforms. In that case, however, the sense of the solution will be
lost, because the effect of coupling of the two physical fields will be neglected. We can
proceed to a solution by linearizing the denominator pcpcp 2222 )()]()([ ξεκξξ +++ . Under
the assumption that the value of the term ε ξ( )c p2 is smaller compared to other terms, the
expression can be reduced, with omitting some terms, to the form [7]

)(])()[( 222 ψξϕξχ ++⋅+++ kpcp (11)

where χ, ϕ, ψ are small quantities which ought to be determined. Therefore, both the
denominator in the equation (10) and the expression (11) are expanded into polynomials
with regard to the variable p, and they are equalized.
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By comparing the coefficients at p3, p2, p and the free term in the equation (12), and
neglecting all the mutual products of values χ, ϕ, ψ as small quantities of higher order,
we can find these small quantities
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The approximation of the denominator in eq. (9), (10) by the expression (11) is
justified because the following relations are satisfied:
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that is the terms cξ+ϕ and κξ2+ψ in eq. (11) do not differ much from the terms cξ  and
κξ2  in eq. (9), (10). Thus, we obtain more suitable expression for transforms uc
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By applying  the inverse Laplace transform (8) to the simplified expressions (15),
obtained from (9) and (10), we come to the transforms ),( tuu cc ξ= and ),( tss ξθθ = in the
domain of time [6]:
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Let us introduce nondimensional quantities:
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The functions α, β, γ and ω can be also reduced to nondimensional form:
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By applying the inverse transforms (7) to equations (17) and (18), with regards to eq. (19)
and (20), the final solutions for the fields of displacement and temperature for the half-
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space x ≥ 0 can be obtained in nondimensional form
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The equations for u and θ defined by eq. (21) and (22) at any point of the half-space
x ≥ 0 and in any moment of time, could be determined numerically, by applying Filon’s
procedure for calculation of integral of fast-oscillating functions [7].

4. APPROXIMATE SOLUTION.

In addition to applying the procedure of numerical integration, it is possible to obtain,
with some limitation, the approximate expressions for displacement and temperature
which are more suitable for practical use. All the integrands contain the multipliers of the
form:
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For sufficiently high values of nondimensional time t , upper terms tend very fast to
zero, beginning from some value oξξ = . Taking for oξ a sufficiently small value

)1( <oξ it can be considered that the following relations are satisfied:
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Accepting for αt a sufficiently high value, taking for example
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the exponential function )exp( tα− for oξξ > tends very fast to zero. From eq. (24) the
minimum value of the nondimensional time can be defined and it is valid for the
performed approximation, that is
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Taking, for example, 1.0=oξ  and 01.0=ε (for steel), one obtains 6
min 10=t . This

value is not too large because during that time the thermoelastic wave crosses the way [6]
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vtx κε  (where v=(1+ε /2)c is the wave velocity), which shows

that the condition (25) is not too limiting for the practical use. Since the coupling
coefficient ε for steel has the smallest value, this interval is smaller for other materials.
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As the term tγ−e decreases faster than the term tα−e , it can be seen that the condition
(25) remains appropriate for the definition of the minimum time. After replacing the
functions (23) into expressions (21) and (22) one obtains:
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The upper limit of integration in the above integrals is formally taken infinite. This
will not lead to wrong results because of the change of the integrand. That is, the terms

tα−e and t e γ− tend very fast to zero, so the errors of approximation  (23) for oξξ >  will
not appear.

If the integration of eqs. (26) and (27) is done with neglecting of terms the order of
the magnitude for t being less than the order of the magnitude of retained terms, we can
finally obtain [8], [9]:























 +−−⋅
+

≅
t

txtxu
 2

)2/1(erf1
2
1

2/1
1),(

ε
ε

ε
 (28)











 +−−⋅

+
≅

t
tx

t
tx

 2
)]2/1([exp

2
1

2/1
1),(

2

ε
ε

πεε
θ  (29)

where erf(...) is the error function.
The functions in eqs. (28) and (29) show that the thermoelastic wave changes its form

during propagation, which is the consequence of dispersion. A clearer form of equations
can be obtained by introducing nondimensional distance at the front of the wave in the
direction of expanding, that is
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where tcxvtxx )2/1(' ε+−=−= is the distance of the observed plane at the front of the
wave. In that case the expression for the nondimensional displacement and the
temperature become:
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From the above equations, for the plain state of strain, the nondimensional strain and
stress in the direction of the x axis can be found:
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direction of x axis. The following relations for determination the strain and stress are
used:
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Nondimensional displacement and temperature as functions of nondimensional
distance x ' and time t for the value of the coupling coefficient ε =0.547 (for
polyethylene h.p.) are shown in Fig. 1. All calculations are performed according to eqs.
(21) and (22). In Fig. 2. the nondimensional displacement, temperature and stress,
calculated from eqs.  (31), (32) and (34), are shown.

  
Fig. 1a  Fig. 1b.

    
Fig. 2a Fig. 2b Fig. 2c.
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The change of the form of thermoelastic wave which is noticeable in Fig. 2 is the
consequence of the effect of damping and dispersion [3], [10]. The thermal wave spreads
with the increase of time t . As a measure of spreading of the waves we take the distance
between the planes in which the temperature decreases to 37 percents of the value (1/e-
part) of the maximum temperature at the front of the wave, that is

)1exp()] 2/()'(exp[ 2 −=− tx ε . This gives:
tcx   8'2 ε=  (36)

The coupling coefficient ε is a physical characteristic of the material, so the effect of
damping and dispersion of thermoelastic waves depends exclusively on the value of this
coefficient. This can be shown best in Fig. 3., where the change of the temperature during
the time at the front of the wave ))2/1(( tx ε+=  for some different values of the
coefficient ε is presented.

Fig. 3
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RAVNI TERMOELASTIČNI TALASI U POLUPROSTORU
IZAZVANI PRITISNIM SILAMA U NJEGOVOJ RAVNI

Rastko Čukić, Dejan Trajkovski

Razmatran je problem prostiranja longitudinalnih talasa u poluprostoru izazvanih mehaničkim
uticajima. Jednodimenzioni dinamički problem spregnute termoelastičnosti rešavan je korišćenjem
integralnih transformacija. Dati su tačni i približni izrazi za izračunavanje termomehaničkih
veličina za svaku tačku poluprostora u proizvoljnom trenutku vremena. Izvršena je kvalitativna i
kvantitativna analiza efekta prigušenja i rasipanja termoelastičnih talasa.


