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Abstract. In the present paper the lateral buckling of I-beams under follower loading is
examined. A simply supported beam, subjected to a concentrated load at the midspan is
used as a model. The deformed configuration (i.e. after buckling) is governed by a
system of differential equations with non-constant coefficients which is solved by an
approximate analytical technique. A formula is established for determining the critical
moment of lateral buckling. Moreover, the boundary between existence and non-
existence of adjacent equilibrium is established. The results obtained are compared
with those of a conservative load (i.e. remaining vertical after buckling).

1. INTRODUCTION

In the present work, the lateral buckling response of a simply supported I-beam,
subjected to a midspan concentrated follower load is thoroughly discussed. Assuming
that the loss of stability occurs through divergence, we consider the equilibrium in a
slightly bent configuration in which vertical and lateral deflections as well as angles of
twist are developed. This state of equilibrium is described by a system of three
differential equations [1,2] with non-constant coefficients. Clearly, a closed form solution
of the above system cannot be, in general, obtained. Therefore, one has to resort to
approximate analytical solutions. Hence, an analytic approximate technique for solving
the above system of differential equations is successfully employed.

The determination of the critical (elastic) level of loading is not only of theoretical,
but also of practical importance, since in many current design codes, the design resistance
of a beam against lateral buckling, even in the case of inelastic buckling, is based on the
corresponding value of elastic buckling.

In many recent publications, concerning problems related to lateral buckling, results
are obtained applying approximate procedures [3,4,5,6] as well as finite element [7] or
numerical [8] methods. Approximate shape functions are also used, for establishing the
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postbuckling behaviour in cases of lateral [9] (bending without axial force) or lateral-
torsional [10,11] (bending and axial compression) buckling.

Reviewing the present state of the art a pertinent work which is worth mentioning is
that by Kaschke [12]. This work deals with the lateral buckling of beams on which a
concentrated load was applied through a bar subjected to a compressive force of constant
direction. Kaschke discussed the cases of a cantilever with a tip force and of a simply
supported beam with a force at the midspan using a cumbersome series solution
technique. For the same cases of loading Ings and Trahair [13] studied the problem of
lateral buckling of beams under "directed" loading with the aid of finite element
computer programs.

Non-conservative problems are of paramount importance in modern structural design.
Examples range from Takoma Narrows bridge wind-induced collapse to shell-type
ovalling oscillations of thin-walled metal chimneys under high wind, to fluid-structure
interactions to offshore structures, etc.

The present paper deals with the lateral buckling response of a non-conservative
system due to the type of the follower load (associated with a non-conservative parameter
n), with the following objectives: (a) to define the limit value of the non-conservatives
parameter n (boundary between divergence and flutter instability) for which the beam
loses its lateral stability through divergence (static instability) and (b) to present a
comprehensive and easily applied technique for solving the above problem.

2. BASIC EQUATIONS

Consider the simply supported beam, shown in Fig la, of length l, having an I section
with two planes of symmetry and subjected to a concentrated load P acting in the middle
of the span at the center of a section. We assume that this load form, after buckling, an
angle ηϕ0 (0≤η≤1) with the principal axis yy of the cross section (ϕ0 is the angle of twist
in the midsection of the beam) as it is shown in Fig lb. The case η=1 corresponds to a
load which maintains, after buckling, its initial direction, the case η=0 corresponds to a
load which, after buckling, remains perpendicular to the flanges of the cross section. We
assume also, that the ends of the beam are laterally supported, cannot rotate about z-axis
but they are free to warp. The critical value of loading can be obtained from the
differential equations of equilibrium in the deformed configuration.

We consider a fixed system of axes x, y, z and a local system ξ, η, ζ (Fig 1) at the
center of an arbitrary section αα  [1]. The axes ξ and η are the principal axes of the
section and ζ is the direction of the tangent to the deflected axis of the beam. The
deformation of the beam is defined by the components w and u of the displacement of the
center in the x and y directions and by the angle of rotation ϕ. Components w and u are
taken positive in the positive directions of the corresponding axes and the angle ϕ is
taken positive about the z axis according to the right-hand rule of signs.
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where u0 ,w0 the lateral and vertical deflections at the middle-span of the beam.

Fig. 1. Lateral buckling of a beam subjected to a concentrated follower load.

Projecting the above moments according to the directions of axes ξ, η, ζ, and
assuming the quantities w, u and ϕ as very small we could have:
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The differential equations of equilibrium in the deformed state, taking into account
that the curvatures of the deflected axis of the beam in the xz and yz planes can be taken
as d2u/dz2 and d2w/dz2 respectively, as the deflections are assumed small, are
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(E is the Young's modulus, GJ is the torsional rigidity and ECw is the warping rigidity of
the beam) and in combination with eqs. (2) (Iξ=Ix, Iη=Iy)
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Eliminating u from the second and the third of eqs (4) we obtain the following
differential equation of equilibrium of the beam in the deformed state
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(where the prime denotes differentiation with respect to z). This equation can be also
written in non dimensional form as
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Eq (6) is related with the following boundary conditions
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The last of the above conditions can be replaced by the condition

0)2/1(''')2/1(' =− ϕϕ wECGJ (9)

as one can conclude from the last of eqs (4).

3. APPLICATION OF THE APPROXIMATE METHOD

It is assumed that the variation of the angle of twist along the z-axis of the beam is
given by a function of the form
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where α0, α1, α2, α3, α4 are constant coefficients. According to the boundary conditions
(8), (9), eq (10) can be written as
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(ϕ0 is the angle of twist at the midsection).
Introducing eq (11) into the second term of differential equation (6) we can take after two
integration
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The constants of integration are determined with the aid of boundary conditions (8).
Using, in the second term of eq (12) the expression (11) for the angle of twist, we

could have, after two further integration, the more precise function
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Applying eq (13) for ξ = 1/2, in this case ϕ = ϕ0, we obtain, for the critical value of the
dimensionless bending moment 0M the expression
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The critical moment of lateral bucking of equation (15) can be compared to the
critical moment corresponding to the usual case of a concentrated load, which remains
vertical after bucking. This critical moment can be determined by the formula [14].
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which, using relations (7), can be written
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It is possible to obtain the same expression, applying equation (15) for η=1. (In this case,
the coefficient 13.43 instead of 13.32 is obtained).

As it was expected, according to relation (15), greater values for the critical moment
of lateral buckling compared with values obtained for eq (17) are determined. For
instance, for η=0.50 the value, corresponding to the follower load, is 1.50 times the value
related with the vertical load. For η=0.10 the relation is 8.50 times.

Combining eqs (15) and (17) one can establish the following relation (18) between the
dimensionless critical moments of lateral buckling corresponding to the follower
( foll

crM ) and the remaining vertical, after buckling, ( vert
crM ) load
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968.0

η
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In Fig. 2 the variation of the ratio vert
cr

foll
cr MM / for different values of the parameter

η is represented.
It is clear that if the approximate technique is repeated, using as initial function for the

angle of twist eq (13) instead of eq (11), one could obtain for this angle a more precise
formula. It is, however, ascertained above, as well as for many usual loading cases [12]
that the first cycle gives results with sufficient accuracy.
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Fig. 2. Variation of the ratio vert
cr

foll
cr MM / vs η

For η < 0.087 the above analysis shows that the only possible form of equilibrium of
the I-beam is the undeformed one. This is so, because for η < 0.087 the beam is governed
by dynamic (flutter) instability which can be established by using only the dynamic
stability analysis. Hence, the boundary between static (lateral) and dynamic (flutter)
instability corresponds to η0 = 0.087. Clearly, a lateral static buckling analysis is possible
for η  > η0 = 0.087.

4. CONCLUSIONS

The most important findings based on the model chosen are the following:

(a) A simple and efficient analytic approximate technique is applied for determining the
critical moment for lateral buckling in the case of a beam under a concentrated
follower load.

(b) Formulas for the critical moments of lateral buckling corresponding to the cases of a
follower load and a conservative concentrated load are properly established.

(c) The boundary between divergence and flutter instability related to a certain value of
the nonconservativness parameter η is explicitly determined.

(d) In the area of static instability the critical moment of lateral buckling in the case of
the follower load is up to 8.50 times greater than the corresponding value of the
conservative load.
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BOČNO IZVIJANJE I PROFILA
IZLOŽENIH PRATEĆEM OPTEREĆENJU

G. I. Ioannidis

U predloženom radu ispitano je bočno izvijanje I profila pod pratećim opterećenjem. Kao
model je korišćena prosta greda sa osloncima izložena koncentrisanom opterećenju na sredini
raspona. Deformisana konfiguracija (tj. nakon izvijanja) predstavljena je sistemom diferencijalnih
jednačina sa promenljivim koeficijentima koji je rešen približnom analitičkom metodom.
Postavljena je formula za odredjivanje kritičnog momenta bočnog izvijanja. Sem toga ustanovljena
je granica izmedju postojanja i nepostojanja granične ravnoteže. Dobijeni rezultati su uporedjeni
sa rezultatima konzervativnog opterećenja (tj. zadržavanje vertikalnog položaja nakon izvijanja).


