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Abstract. Three variants of using the proportional-integral action in the variable
structure systems of quasi relay type are considered in this paper. Their characteristics
in respect to reaching and sliding mode conditions, accuracy in the steady-state, forms
of produced control signals, its influence to chattering generation as well as
capabilities of load disturbance rejection are analyzed. Some examples which satisfy
theoretical  conclusions are given.
Key Words: Automatic control, nonlinear systems, variable structure systems, sliding
mode, proportional-integral action.

1. INTRODUCTION

In the modern variable structure systems (VSS) theory with sliding mode of motion
two control strategies are in use: the quasi relay [1] and relay [2]. The first control law is
characterized with high frequency control signal which amplitude is modulated by the
signal proportional to the system error. The amplitude of control signal is exponentially
decreasing to a value determined by the steady-state error of the control system with the
approach to the steady-state. If the control object does not contain pure integrators, the
steady-state error is not zero and VSS go out of the sliding mode. Then, in the given class
of systems, a selfoscillation with small amplitude may accur. This phenomenon was
observed earlier [2] and to eliminate it the low level control signal of the relay type is
introduced, parallel with quasi relay action. In the same way, the third - combination type
of control algorithm was introduced. Control strategy of the relay type gives a high
frequency control signal with a constant amplitude without regard whether the control
system is in steady-state or not. Such control strategy gives better sliding mode condi-
tions, high steady-state accuracy (similar to the systems with unlimited gain). However,
its main disadvantage is the generation of high level, high frequency control signal in the
steady-state regime. This high level signal, often, excites unmodelled dynamics of control
object causing chattering and losses in switching devises. From this point of view, quasi
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relay control law has advantage if steady-state accuracy is to be improved.
Improving of the steady-state accuracy may be obtained by increasing the control

loop gain and/or by introducing integrators in the control unit. The first approach decre-
ases systems error similarly as in conventional linear control systems. Since the VSS are
stable for wide range of loop gain, such approach is possible. However, the analysis
shows that this approach may be valid in case if no control loop limitations. If a
nonlinearity of limiter type is present (which is natural for the real systems) in the control
system , the quality of motion decreases and the system stability may be lost. In  these
conditions the relay control law stays stable, and with the same quality of motion.

Introducing the integral action in the system can reduce steady-state error to zero, for
some type of  perturbation, enabling systems action with lower gain and eliminating
problems of nonlinearities and their influence to the system stability. Such approach was
used in introducing integral action immediately after error detector (before switching
element of VSS regulator) [6, 9, 11]. The integral (I) or proportional-integral (PI) action
may be introduced in this way. In both cases, especially with I-terms, the control signals
will be like those in the relay type of VSS, which is in opportunity with using quasi relay
control law. Except this, some authors, who use this approach, increase in design process
the order of equivalent control object by one and make the VSS controller more complex.

The second approach, which may be used, introduces PI action parallel to the VSS
controller. This is a simpler case to implement VSS controller in the existing conven-
tional control system with PI action. In this way, the dynamic characteristics of the
system will be improved. However, in this paper it will be shown, this control algorithm
has poor sliding mode existence conditions.

The third approach, considered in [3, 4, 5, 71], and up to now less known, places the
PI action after VSS controller, before control object. The main idea, which brought this
approach, was taken from the conventional method of controller design using, so-called,
"method of magnitude optimum". This method is based on the cancellation of the bigger
time constant of controlled object and the introduction of the pure integrator. In this way,
the equivalent control object, from VSS controller point of view, retains the same order.
Even if the cancellation is not complete, thanks to the known robustness of VSS in
respect to the unmodelled dynamics, the system will stay in working regime. Such
approach was analyzed in detail in [4]. The basic conclusion, which may be taken from
the previous explanation is that the order of the equivalent control object is not changed
and PI action may be incorporated in the control algorithm as its integral part. In this
paper it will be shown that the sliding mode existence conditions, for this approach, are
better then in the first two approaches and that they improve with time.

On the other side, since the VSS is a nonlinear system (in which, very often, we
operate with linear mutual commutated structures), the first approach can be observed,
from the control loop point of view, as introducing the PI term to cancellation of unde-
sired object dynamics, too, and do the process of the VSS controller design without
increasing  the equivalent object order so that the PI term may be included in the VSS
control algorithm. However, analysis, given in this paper, will show that this approach
may lead to degradation of the sliding mode existence condition if the load perturbation is
present and, therefore, must be used design procedure given in [6, 8, 9].

                                                          
1 In [7]  PI action is introduced  after conventional VSS controller and together  in parallel with P action.
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The intention of this paper is to analyze features ofthe VSS with PI action, using
given approaches in the class of the quasi relay control algorithm without increasing
design order of the eqvivalent control object. On the basis of this analysis,
recommendations for practical design of new VSS controller, or reconstruction of present
PI controllers will be given.

This work, except being a theoretical analysis, has clear practical importance:
research of the best approach to implementation of the VSS control algorithm in the
existing control systems with the PI controller (which are dominant in the conventional
control systems design) in order to improve their performances: rise-time without
overshoot, robustness on the parametric and load disturbances etc.

2. PROBLEM FORMULATION

Let the mathematical model of a linear single input - single output control object of n-
th order, without finite zeros,be given in the controllable canonical form :

ubAxx +=(t) (1)
1xc =

For the output variable c(t) regulation, the VS regulator with PI action will be used,
taking one of the following three control algorithms:
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From (7) it may be seen that the system of regulator type is considered (r=const). The
assignment of the controller is to provide c=r after short time, In order to satisfy this
requirement, the sliding mode of motion will be organized on the hyperplane g=0. The
process of regulation flows in two phases: reaching phase and sliding mode phase. In the
reaching phase the system state, from any initial condition, must be taken on the state
g=0, when second phase begins - the sliding mode in which the system state stays on the
given hyperplane g=0, and slides on it. The first phase occurs in short time, but the
second - one should take place continuously.
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Therefore, the dominant motion in the system is the sliding mode, which is described
by the relation g=0. Thanks to the chosen systems state (controllable canonical form) this
relation is, de facto, differential equation of n-1-th order. The system motion in this phase
is independent (invariant) from its parameters and depends only on the VSS controller
parameters, given by vector c.

3. STEADY-STATE ERROR OF THE SYSTEM

We will show first, that the considered system, without integral term in (2), (3) or (4),
has steady-state error, if the control object (1) is of self regulation type. In the steady-
state it is 0=x  and the system model will be:

− + =a x b e1 1 1 1 0Ψ ,

-for the systems with controls in form (2) and (4), and

,011111 =Ψ++− ebbexa
-for the systems with control (3).

In the steady-state, g(∞)=c1e1, and, therefore, ge1>0, Ψ1=α1. Taking in account e1=r-
x1, we have

1

1
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=∞ , (8)

where q=0 for the systems with control (2) or (4) and q=1 - with the control (3).
Relation (8) shows that the steady-state error for the considered systems has a value

like as in the conventional linear systems with only one difference: the VSS can work
with a higher gain then the conventional systems and, therefore, may obtained better
steady-state accuracy. It is clear from (8), if the object contains a pure integrator, then
a1=0, and the system steady -state error will be zero.

It may be shown that the steady-state error in the considered class of the system is a
consequence of the sliding mode loss in the neighborhood of equilibrium state. If the
sliding mode was to occurr continuously - the steady - state error would be zero.

If the PI type of control is introduced, with zero initial conditions, the steady-state of
the considered system will be given by relations:
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-for the control in form (2) or (4), and
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iα ,

-for the control (3).
Using Laplace transform method to the previous relations and solving for E1(s) , we

have, for the control (2) or (4) and (3), respectively, the following relations:
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from which it is clear that the steady-state error will be zero if  the reference signal is the
step function.

For the third case (the control is (4)) the following approach may be used . The PI
term is linear and it is on the input of controlled object which is linear, too. For the VSS
controller of proportional type (relation (4) without integral addend) the equivalent object
(series connection of the controlled object itself and the PI term) is with the pure
integrator, therefore a1=0, and  from relation (8) it becomes e1(∞)=0. Since the relations
of the steady - state for the first and third  approaches are the same, and for the second
approach is  unessentially different, it may be concluded: steady-state error  in the VSS
with proportional-integral action will be zero without consideration  where the PI-action
is placed: before, parallel or after  the VSS  controller. From this point of view, the three
considered systems are equivalent.

4. THE SLIDING MODE EXISTENCE CONDITIONS

Now, we start to discuss conditions of the sliding mode existence in the considered
class of  VSS, assuming that the initial conditions of PI-term integrators (in relations: (2),
(3), (4)) are zero. Later, in section 5, non zero initial conditions will be taken in
consideration.

Starting from the well known general sliding mode condition [2]
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which provides both: the reaching and the sliding mode conditions, and taking in  account
that the system is of regulator type, therefore, it may be analyzed as autonomous system;
in sliding mode
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where: I - is the unity matrix, Ψ1(x1) - is symbolic annotation of the following operations,
for the control (2), (3) and (4), respectively:
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In previous relations •  must be replaced by x1, after  the mentioned operations have been
taken.

By differentiating the expression for sliding hyperplane (6), and replacing e=x for the
autonomous system, the following expression it will be obtained, after replacing (1), (2)
or (3) or (4) and simple transformation:

i

n

ri
iii

r

i
ii

n

i
ini

n

i
ini

n

i
i

T xaxbaxcaxccxcxcg ∑∑∑∑∑
−

+==

−

=

−

=
−

−

=
− −Ψ+−+−==

1

11

1

1

1

1
1

1

1
1 )( (12) 

kjx ji ,...,3,2;),( 11 =ΨΨ=Ψ .

By multiplying (12) with g, and assuming g>0 (g<0), then, to satisfy (10), it follows
that )0(  0 >< gg , and this will be true if the following relations are satisfied:
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Condition (13) must be fulfilled for every xi≠0, and, therefore, the following relations
must be satisfied:
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Condition (14) will be reliably fulfilled if its every term of sum is less simultaneously
then zero, i.e.:
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The second condition in (16) may be expressed as a well known condition [1]
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The first of conditions (16) depends on the control signal type or on the introducing
place of PI action in the controller: before (i), parallel (ii) or after (iii) the VSS controller.
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(i) For the case when PI action is before the VSS controller, it may be written:
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Since the commutation function Ψi is symmetrical, this expression may be rewritten in
the form
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This condition will be reliably satisfied if the next relation is true
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(ii) If the PI action is placed in parallel with VSS controller, then it will be:
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(iii) If the PI term is placed after the VSS controller, then:
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Since the commutation function Ψ1 is symmetrical, this expression may be rewritten
in the form
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Relations (17), (18), (19) and (20) are valid for g < 0, g > 0  too. It is easy to show.
Therefore, relations (15), (17) and (18), or (15), (17) and (19) or (15), (17) and (20) give
sufficient conditions for existence of the sliding mode on the given hyperplane g=0 if the
initial state of the system is in the neighborhood of the hyperplane.

Before we analyze the reaching conditions, we will compare obtained relations (17),
(18), (19) and (20) with those of the conventional VSS without PI action. Condition (17)
is the same as for the conventional case. Conditions (18), (19) and (20) become identical
with the conventional conditions, if the integral term is omitted from the denominator of
relations (18) and (20) or in the nominator of (19). Observing relation (20) we may
maintain that the second addend in the denominator is reliably  positive. Therefore, for
the same parameters, the sliding mode existence conditions in the system with PI action
after VSS controller will be easier to satisfy then in the other two cases.

Consider now the reaching conditions, i.e. the sufficient conditions which must be
fulfilled to guarantee falling into the state g=0  from any initial state. As it was earlier
said, fulfilling the relation (10), according to Lyapunov's stability theory, provides the
reaching conditions. The derived sliding mode existence conditions will be valid for
reaching mode conditions, too if an additional requirement is satisfied. Namely, we
suppose g=0, for deriving the sliding mode existence conditions, which is not valid for
the reaching conditions. Because of that, for the reaching conditions derivation, one
should start from the relation

00 xcT
n gx −= .

In order to carry out the similar derivations as the one above, it may be concluded
that the reaching mode conditions will be satisfied if , along the conditions (15), (17),
(18) or (15), (17), (19) or (15), (17), (20), the following condition is fulfilled

.01 ≤−− nn ac (21)

The derived conditions for the sliding mode and reaching mode are only sufficient.
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5. INFLUENCE OF THE INTEGRATOR NON ZERO INITIAL CONDITIONS

Analysis shows that the integrator non zero initial conditions have essential influence
to the system behavior, especially for the second and the third algorithms, which may
destroy the sliding mode. In the first algorithm this will not occur but the control high
frequency signal reaches a higher amplitude.

Starting from relations (2), (3) and (4), if the initial conditions are introduced they
may be written in the form:
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where non zero initial conditions of the integrators are denoted with p0 .
From this relation the following can be observed :

When the PI term is placed before the VSS controller, an additional term Ψ1p0, which
may be written in equivalent form α1|p0|sign(g), will be present in the control signal with
the influence similar to the action of the relay type of control, introduced usually, in addi-
tion to the VSS quasi relay control algorithm to eliminate the undesired fluctuation in the
steady-state.

In the algorithm with PI term placed after VSS controller (or algorithm with PI term
parallel to the VSS controller) non-zero initial conditions directly influence the controlled
object input and may be treated as a disturbance transformed on the object input. This
disturbance may be significant and to distort the sliding mode conditions. For the
elimination of this negative influence, the initial conditions must be set to zero before
starting the system to work.

Simulation and experimental results show that these conclusions are true. The first
algorithm generates a high level, high frequency switching signal on the controlled object
input whith the amplitude dependent on the initial condition and the value of integral of
error signal. From one side, this high level signal can give better robustness of the system
to the parametric and load disturbances, but, from the other side, it may be a carrier of
excitation of unmodelled dynamics causing chatter arising. The chattering has a very bad
consecuences on the mechanical transmission elements.

The second and the third algorithms, in contrast to the first, generates a low level
continual signal in the steady-state. In this way the chattering is eliminated, and system
comes in the steady-state without error. Naturally, these systems have lower robustness to
the load disturbances. This appearance of low level continual control signal in the steady-
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state is a consequence of integration of a nearly symmetrical switching signal with
exponentially decreasing amplitude.

6. ROBUSTNESS TO THE PARAMETER VARIATION AND DISTURBANCES

The previous explanations did not include the variation of the plant parameters (ai, b)
and the external disturbances. Let the plant parameters variations be bounded in the
ranges

maxminmaxmin ; bbbaaa iiii ≤≤≤≤ .

Relation (15) with k<n-1 is very difficult to satisfy. For a robust control in this case it
needs k taken as k=n-1 and relations (17), (18) (or (19) or (20)) slightly changed in this
manner:

[ ]•>
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i ,
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where •  replaces the correspondence relations (17)-(20).
It can be seen that for the system without constraints these relations may be always

satisfied and robustness to the parameter variation provided.
It is difficult to provide full robustness for the external disturbances without knowing

the place of disturbances action, its characters and intensity. Since the linear plant is
considered, any external disturbance can be easily transformed to the plant input. Let the
summary equivalent disturbance be designed by f. This disturbance will have the same
influence as the non zero initial conditions of the PI term integrator in the second and the

third approaches. In the nominator of relations (18)-(20) an additional term f
x1

 will

appear. The disturbance effect to the sliding mode existence conditions can be estimated
by relations
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respectively for the first, the second and the third approach.
From these relations it can be seen that the first approach may have the significant

influence on the sliding mode existence conditions if

1
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1 xdtxk
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After that the system goes out of sliding mode and, may, after long time come back to
the sliding regime. For the second approach it is clear that the sliding mode existence
conditions are difficult to satisfy because x1→0. In this case, if the equivalent disturbance
is a step function, because of the parallel action of the PI term, the system may have
satisfactory disturbance rejection. With the third approach it is clear, from the given
relation, that the sliding mode existence conditions are dependent on the absolute value of
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integral of the error signal and, therefore, this approach has the best sliding mode
characteristics to the load disturbance. Unfortunately, since the integral term has a small
value in the steady-state, its influence to the disturbance rejection is slightly better then in
the second approach.

7. EXAMPLE

In an example of the controlled object of third order the design method will be shown
for the all three types of VSS regulators previously analyzed, as well as effects of their
work in different conditions with the same parameters of PI term and with conventionally
designed VSS regulator without PI action. Let transfer function of the controlled object
be:

))105,0)(7)(1(
200

)105,0)(78(
200)( 2 +++

=
+++

=
ssssss

sW

We will choose parameters of the PI term to cancellation the bigger time constant of
object (T=1 s) and neglect small time constant (T=0.05 s). Therefore, the controlled
object, for design purpose, is of the second order.

The control signal will be formed on the basis of the error signal commutation (k=1).
Sufficient reaching and sliding mode conditions, for the system with conventional VSS
controller  (without PI term) will be satisfied if the following relations are fulfilled:

.
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We will choose c=5, α1=1.

The results of digital simulation will be present in the next figures .
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Fig. 1. Output signal c(t) and control signal u(t)  for the conventional  linear system
design with optimally tuned  PI  controller.  Load disturbance f(t) is applied to the input

of  the last  object integrator.
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Fig. 2. System with conventional VSS  controller (without PI  term)
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Fig. 3.  VSS controller with PI  term before VSS  controller
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Fig. 4. System with PI term parallel to the VSS controller2

                                                          
2The gains of  the proportional and the integral action are  0.1. For the other VSS controllers with PI action they
are  1.
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Fig. 5. System with PI term after the VSS controller

CONCLUSION

The problem of accuracy improvement in the steady-state for the VSS with quasi
relay control algorithm, without the increase of its design complexity, is considered in
this paper. The three approaches, which are characterized by the place of  the introduced
additional PI action i.e. before, parallel or after conventional quasi relay VSS controller.

The first approach generates a high level, high frequency control signal in the steady-
state and, therefore, is like the control signal in the VSS with the relay control algorithm.
From this point of view, better robustness may be expected to the parametric and load
disturbances. Unfortunately, the system with such algorithm goes out from the sliding
mode if an unmodelled dynamic and load disturbance are present. This is a direct
consequence of the sliding mode existence conditions in which the integral term may
change the sign. Non zero initial condition of the introduced PI term do not have a
negative consequence. A high level steady-state control signal may cause chattering.

The second approach does not cause chattering in the steady-state, but is sensitive to
the parameter variation of the PI term. The PI term integrator non zero conditions have
negative influence to the system and must be set to zero before system starting, .

The third approach, excluding the negative influence of non zero initial conditions,
similarly as in the second approach, has, on the whole, the best characteristics. In the
steady-state it does not excite unmodelled dynamic (chattering), it is not sensitive to the
PI term parameter variation, has a satisfactory insensitivity to the load disturbance and,
finally, the sliding mode existence conditions improve with time.
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SISTEMI PROMENLJIVE STRUKTURE  KVAZI-RELEJNOG
TIPA SA PROPORCIONALNO-INTEGRALNIM DELOVANJEM

Čedomir Milosavljević

Razmatraju se tri varijante primene proporcionalno-integralnog delovanja u  sistemima pro-
menljive strukture sa kvazi-relejnim zakonom upravljanja. Analiziraju se njihove karakteristike u
pogledu uslova nastanka i održanja kliznog režima, tačnosti u stacionarnom stanju, oblika signala
upravljanja koji generišu na ulazu objekta upravljanja, njegov uticaj na  pojavu kliktanja, kao i
mogućnosti rada u uslovima delovanja opterećenja. Daju se primeri koji potvrđuju teorijske
zaključke.


