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Abstract. The development of a two-dimensional viscous incompressible flow
generated from a deformable circular cylinder impulsively started into rectilinear
motion is studied numerically for the Reynolds numbers equal to 550 and 1000. The
vorticity transport equation is solved by a second-order finite-difference method in both
directions of the domains. The Poisson equation for the stream function is solved by a
Fourier-Galerkin method in the one direction of the flow which we assume to remain
symmetrical and second-order finite-difference. The advances in time are second-order
Adams-Bashforth. The computed results are compared qualitatively with experimental
and numerical results done before in the particular nondeformable case. The
comparison is found to be satisfactory.

1. INTRODUCTION

Despite the simplicity of the obstacle geometry, the flow structure around an
impulsively started circular cylinder (nondeformable) into rectilinear motion is complex,
and all the phenomena of fluid mechanics are present. That is why, for more than a
century, numerous theoretical, computational and experimental investigations of this
problem have been reported in the literature.

Theoretical investigations of an impulsively started flow were frst undertaken by
Blasius in 1908 [2], who obtained the first two terms of a time series solution of the
boundary layer equations. Subsequently there have been many works attempting to obtain
higher-order terms and advance the solution beyond the separation stage. Goldstein and
Rosenhead [9], Schuh [20], Wundt [30] and Watson [29] have all considered this
problem in the limiting case of infinite Reynolds number. Some authors (Wang [27],
Collins and Dennis [6] [7], Bar-Lev and Yang [1] and Jovanovic et al. [13]) have
extended their works to finite and high Reynolds numbers. In Collins and Dennis the
problem is formulated in boundary layer variables and an expansion in powers of time is
obtained. These expansions are corrected to take into account finite Reynolds number
effects and are adjusted to match the uniform flow far from the cylinder. In Bar-Lev and
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Yang the vorticity equation is solved by the method of matched asymptotic expansions.
Inner (rotational flow) and outer (potential flow) solutions are obtained to third order in
time and a composite solution is formed. The last two works provide extensive
information for flow quantities of interest (such as vorticity field, streamlines, body
forces). In Jovanovic et al. the unsteady boundary layer equation of second order is
solved by the parametric method of matched asymptotic expansions. All these works are
valid for relatively short times and the range of validity increases with increasing
Reynolds number.

The second class is that of purely numerical solutions of the Navier-Stokes equations.
Chronologically, Thom [25] gave the first numerical solution of steady Navier-Stokes
equations corresponding to viscous flow around a circular cylinder. Unsteady flow was
first studied by Payne [19] for Reynolds numbers equal to 40 and 100. Kawaguti and Jain
[14], Son and Hanratty [22], Jain and Rao [12], Thoman and Szewczyk [26], Dennis and
Staniforth [32], Collins and Dennis [6] [7], Patel [17] and Daube and Ta Phuoc Loc [8]
investigated this problem for different Reynolds numbers. The common points of interest
of these papers are the development of the primary unsteady wake length behind the
cylinder and the evolution in time of the drag coefficient and separation angle.

In all these references, the problem is formulated in vorticity-stream function
variables, and then Eulerian, Lagrangian and hybrid methods have been used for their
discretization. Numerous computations have been performed in the last 30 years on this
flow, but there are still open questions as to whether the numerics inteirfere with the
physics of the problem, especially for the high Reynolds number flows. Ta Phuoc Loc
[23] uses a fourth-order scheme to resolve the Poisson equation for the stream function
and a second-order finite difference scheme for the vorticity transport equation. He
presented computations for a range of Re (550-l000) and detailed diagnostics and
comparisons with experimental results. This work was extended to higher Re (3000-
9500) by Ta Phuoc Loc and Bouard [24]. Lecointe and Piquet [16] tested several high-
order compact finite-difference schemes as well and they presented accurate
computations for Re up to 550 and tentative simulations for higher values of Re. A more
recent work is that of Wang and Dalton [28]. They used a predictor-corrector finite-
difference sclleme for the vorticity transport equation and a fast Puisson solver for the
stream function. They presented results for impulsively started and stopped flows for Re
of 102 and 550.

More recently, some new numerical procedures, called vortex methods, are used to
integrate the vorticity-velocity formulation of the Navier-Stokes equations. In vortex
methods the most notable studies are those of Smith and Stansby [21]. Chang and Chern
[4] and Koumoutsakos and Leonard [15]. The first two investigations use the Cloud-in
Cell method (Christiansen [5]) to convect the vortices but use different techniques to take
account for viscous effects. Smith and Stansby use the method of random walks whereas
Chang and Chern use a finite-difference scheme on the grid used by the Cloud-in Cell
technique to resolve the diffusion operator. Both works take advantage of the stability
properties of vortex methods to extend their computations to very high Reynolds numbers
(up to 106 in Chang and Chern). However, it appears that the increase in Re simulated is
not followed by an adequate increase in the resolution. Recently, Anderson and Reider
[31], and Wu et al. [35] conducted simulations of this flow using finite-difference
schemes. Their simulations demonstrated the computational difficulties of the problem
since very large numbers of grid points were necessary, in both works, to advance the
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solution up to t = 3 for Re=9500.
Koumoutsakos and Leonard (1995) develped high-resolution direct numerical

simulations using a novel adaptive numerical scheme for the enforcement of the no-slip
condition for the vorticity-velocity formation of the Navier-Stokes equations. Their
results, compared with some representative experimental, theoretical and computational
works, provide benchmark quality simulations for the early stages of the flow around an
impulsively started cylinder. Moreover, they identify the underlying mechanisms of
unsteady separation and describe the effect of these phenomena on the drag coefficient.

Experimental investigations on unsteady flows resulting from an impulsive
acceleration of a nondeformable cylinder date back to time of Prandtl [18]. Some
experimental visualizations were described by Honji and Taneda [11] and Taneda [34].
However, the most extensive experiments to date seem to be those presented by Bouard
and Coutanceau [3] for a translating cylinder. They analysed in detail the topological
structure (formation and development of secondary vortices) of the flow around a
cylinder by using the instantaneous velocity field and streamlines.

The complex problem of unsteady viscous flow around a deformable body is of
interest as well in nature as in the technical practice (self-adaptable surfaces, for
instance). The relevant physical problem could be also a nonviscometric flow in contact
with the wall. The present work is concerned with the analysis of the flow structure at
early times of the impulsively started uniformly deforming circular cylinder. The Poisson
equation for the stream function is solved by a Fourier-Galerkin method coupled with a
finite-difference method of second order. The vorticity transport equation is solved by a
second-order Adams-Bashforth procedure, similar to Hakizumwami [10].

2. BASIC EQUATIONS

Figure l. System of coordinates

Let us consider the unsteady flow past a circular cylinder whose radius (of initial
value a0 grows uniformly with a constant factor of deformability A, started impulsively at
the same time into rectilinear motion, with a constant velocity U∞, in a 2D viscous
incompressible fluid initially at rest. The unsteady Navier-Stokes equations in stream
function and vorticity formulation for the flow past a circular cylinder can be written in
polar coordinates as
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where (r1, θ)  are polar coordinates (fig. 1), ν  is the kinematic viscosity and t1 is the time.
The stream function ψ1  is defined by
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Initial conditions

The cylinder being suddenly started from the rest, has the following initial conditions:

0=ψ  and 0=ω      at     0=t (8)

Boundary conditions

*For 0→ξ
The cylinder being deformable, has velocity components at the wall of
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It results from previous equation that ψ is a non uniform function on the surface of the
cylinder. Hence, a uniform function is introduced as
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we can eliminate the stream function multiformity.
*For ∞→ξ
 The stream-function of the flow past a deformable circular cylinder is well-known
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By introducing the uniform stream-function, the boundary condition is determined by
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For the downstream boundary condition at infinity an open boundary condition is
established by assuming that the viscous-diffusive effect is negligible; then the vorticity
equation will be,
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This condition is similar to the so-called “radiant Sommerfeld condition” [24].

The new system to resolve

The new system to resolve is determinated by (12) and (13),
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with the new boundary conditions,

0=uψ           for          0=ξ
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3. BODY FORCES

The drag force may be computed as the sum of the pressure drag Fp and the friction
drag Ff. The pressure drag can be determined from the vorticity flux on the cylinder
surface as
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while the friction drag may be computed from the vorticity on the cylinder surface as
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Hence, the total drag force on the body follows

fpT FFF += , (16)

and the drag coefficient of the body is given by
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4. NUMERICAL METHOD

The vorticity transport equation (6) can be written as
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The second-order Adams-Bashforth temporal scheme is used together with central
differences in space for equation (18) on a grid defined by ξi  = (i-1)∆ξ, i = 1,2,...,M;
θj = (j-1)∆θ, j = 1,2,...,N; ∆ξ = ξ∞ / (M-1), and ∆θ = π / (N-1). The domain is truncated in
the ξ-direction at ξ∞. As a result,
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By using the following expansions for ψu  and ω:
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Equations (23) defines a tridiagonal system of equations. An inverse Fourier
transform on the solution of (23) yields the corresponding solution in physical space (ψij).

It remains only to determine the surface vorticity over the cylinder (equivalently the
boundary condition for equation (18)).

Equation (7) at ξ = 0 is
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So, similar to [10], the seqence of the numerical calculations is the following:
1 - Initially, we consider an irrotational flow, ω(0,θ,t)-0.
2 - Fourier sine transform ω. Fourier sine transform boundary condition at infinity.

Solve the Poisson equation for the stream-function in the Fourier space. Take the
inverse Fourier sine transform of the solution.

3 - The solution in the previous step is used to update the vorticity along of the
cylinder surface to satisfy the no-slip condition.

4 - Construct new values for the vorticity by solving the transport equation, with
appropriate time marching.

5 - Repeat all steps from the step 2.

5. RESULTS

First of all, if a circular cylinder was deformed (with a radius growing or reducing in
time) in a fluid at rest, the flow streamlines would be rectilinear as it is shown by the
following sketch.

Growing radius Reducing radius

Now, we will study the flow structure around an impulsively started and uniformly
deforming circular cylinder for differeent Reynolds numbers at early time.

For the numerical calculations, for all Reynolds numbers: the time step is ∆t = 0.01,
the grid size is 90 × 180 and ξ∞ is equal to 1.6094.

5.1 Re0 = 550

5.1.1 The flow structure

a) Nondeformable cylinder
The flow structure past an impulsively started nondeforming circular cylinder is

complex. The streamline history of the flow field is presented in Figure 2. Beside the
primary vortex, the appearance of a small secondary region can be observed. The
streamline patterns show the appearance of a secondary vortex at t = 3 (Fig. 2). The
secondary vorticity is also visible in the vorticity plots at t = 2. The secondary vorticity
remains confined after its initial appearance. Its evolution is mainly affected by the
dynamics of the primary vortex. As the secondary vortex grows it penetrates the primary
vortex, but it is never able to reach the outer irrotational flow field. It seems that a stable
configuration (the so-called α-phenomenon ) is established before t = 4.

The interplay of primary and secondary vorticity is manifested in the drag curve.
After its initial drop, the appearance and growth of the secondary vortex increases the
drag coefficient as the primary vortex is pushed outwards. This increase reaches a
maximum at 3=t  (fig. 3) beyond which the strength and the size of the secondary vortex
are reduced whereas the primary vortex is further convected by the free stream velocity.
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The drag decays to its steady state value while symmetry persists.

Instantaneous streamlines                               Equi-vorticity contour
Figure 2. Evolution of the flow structure for Re0 = 550 and A=0

Figure 3. Drag coefficient of an impulsively started deformable cylinder at Re = 550

Finally, we may observe the similarity of our results with these previously obtained
numerically by Koumoutsakos and Leonard and experimentally by Bouard and
Coutanceau.

b) Deforming circular cylinder: a = a0 (1 + At)

Case of the growing radius (A > 0)

The impulsively setting of a growing circular cylinder in a rectilinear translation
causes a backward deviation of streamlines issued from the body surface. This defiation
causes some new phenomena beside those already announced before in the
nondeformable case. As a matter of fact, the, the growing radius pushes the primary
vortex away from the cylinder surface, renders the secondary vortex much stronger and it
will be able to push the primary vortex away from the cylinder. However, it can not reach
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the outer irrotationnal flow field. We can also see that the so-called α -phenomenon is
established before 3=t  (fig. 4).

Instantaneous streamlines                                Equi-vorticity contour
Figure 4. Evolution of the flow structure for Re0 = 550 and A = 0.015

Case of the reducing radius (A < 0)

Instantaneous streamlines                            Equi-vorticity contour
Figure 5. Evolution of the flow structure for Re0 = 550  and  A = -0.015

In the case of a reducing radius, there is another new flow phenomenon behind the
cylinder. In figure 5 the development of the flow structure is given. The cylinder with a
reducing radius has tendency to attract the fluid towards its surface. So, the primary
vortex is aspired by the cylinder and the formation of the secondary vortex is prevented.
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5.1.2 Influence of body deformability on the drag coefficient

The following was discovered relative to the drag coefficient for a growing radius.
Before the primary vortex formation, the fluid pushed outwards by the cylinder created a
reaction force opposite to the drag force, in addition to the effects due to sudden
translation. Therefore, the bigger deformability factor A, the stronger the reaction force
and the force ratio becomes sufficient to overpower the drag force and to propel the
deforming cylinder down flow in the cases A=0.1 for Re0=5.50. However, the formation
of primary vortex reduces the preceding effect. The primary and secondary developments
increase both the wake behind the cylinder and the drag force as its consequence (fig. 3).

For a reducing radius, we can see that the attraction of the primary vortex by the
cylinder and the absence of the secondary vortex reduce the wake behind the cylinder. As
a consequence of this phenomenon, we observe on the drag curves (fig. 3) that the drag
coefficient after its initial drop grows less rapidly than in the case of the nondeforming
cylinder.

5.1.3 Influence of body deformability on the boundary layer separation

The curves of vorticity on the surface of the body show the following: the
augmentation of the radius advances the boundary layer separation (fig. 6), similar to the
wall-injection effect, while the reduction of the radius delays the boundary layer
separation (fig. 6) as in the case of the wall-suction control.

Figure 6. Vorticity on the surface of the body for  Re=550

5.2 RE0 = 1000

5.2.l The flow structure

a) Nondeformable cylinder

The time history of the flow structure for Re=1000 is shown in figure 7. Phenomena
similar to those observed in the previous case Re=550 are present here as well. The
primary vortex is formed at the rear of the cylinder and the secondary vortex, although
stronger in this case remains confined by the primary vortex. The secondary vortex
attempts to reach the outer flow field but stays blocked by the primary one.

All our results are similar to these previously obtained by Koumoutsakos and Lenoard
and Bar-Lev and Yang, while large discrepancies appear between the results of the
present study and those presented by Loc because of the different initial conditions.
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Instantaneous streamlines                      Equi-vorticity contour
Figure 7. Evolution of the flow structure for Re0=1000 and A=0

b) Deforming circular cylinder: a = a0(1+At), (A>0 and A<0)
Also, all the phenomena similar to these observed in the previous case Re = 550 are

present here, but in the more pronounced form. In fact, the augmentation of the radius
implies that the secondary vortex becomes stronger than in the preceding Reynolds
number case. This phenomena allows the secondary vortex to reach out the external
irrotationnal flow for a deformability factor equal to 0.05 (fig. 10). The formation of the
α -phenomenon takes place approximately at the same locations but at inferior times as
in the analogous nondeformable case (fig. 8).

Instantaneous streamlines Edui-vorticity contour
Figure 8. Evolution of the flow structure for Re0=1000 and A=0.015

As in the previous case (Re=550). the diminution of the radius of the circular cylinder
prevents the formation of the secondary vortex and attracts the primary vortex towards
the cylinder.
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Instantaneous streamlines Equi-vorticity contnur
Figure 9. Evolution of the flow structure for Re0 =1000 and A = -0.01.5

5.2.2 Influence of body deformability on the drag coefficient

Briefly, we may observe at Re=1000, for either a nondeformable or deformable
circular cylinder, the same effects as those already observed in the previous case of
Re=550. The only difference consists in a value of the deformability factor A (0.05
instead of 0.1) causing a propulsion of the cylinder (fig.10) in the case of the growing
radius of a cylinder.

Figure 10. Drag coefficient of an impulsively started deformable cylinder at Re=1000

5.2.3 Influence of body deformability on the boundary layer separation

As the curves of vorticity on the surface of the body show again, the increase of the
radius of the cylinder advances the boundary layer separation (fig. 11), having the same
effect as wall-injection, while the decreasing of the radius delays the point of the
boundary layer separation (fig. 11) similar to the classical wall-suction.

Figure l l. Vorticity on the surface of the body for Re=l000
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6. CONCLUSIONS

The present numerical simulation is concerned with the analysis of unsteady separated
flow at early times around the impulsively started uniformly deforming circular cylinder
for two Reynolds numbers. Firstly, all the results including α -phenomenon, previously
detected either numerically or by experimental visualisation, have been reproduced in
detail in the preliminary nondeformable case. Then we have studied the interaction
between vortical structures and deformable walls and their effect on the drag force
experienced by the body. The interplay of these primary and secondary vorticies, on the
one hand, and the deforming surface of the cylinder, on the other hand, is the underlying
mechanism for drag reduction and increase. In fact, it has been shown here that, in both
the cases of the growing radius of the cylinder and the reducing radius of the cylinder, the
body deformability factor has a favorable effect on the drag coefficient, but for different
physicals reasons. In fact, in the case of a growing radius the favorable effect comes from
the force propulsion created by the body, and in the case of a reducing radius the
favorable effect comes from the attraction of the primary vortex towards the cylinder. So,
the body deformability may be used as a wake control device that would favorably effect
the interplay of primary and seccondary vorticity, thus reducing the drag coefficient.
Finally, we continue the numerical study of the flow at the greater Reynolds numbers as
well as the heat transfer on a uniformly deforming cylinder, parallely using boundary
layer approximation with some initial rather satisfactory results [33].
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O PROBLEMU UPRAVLJANJA STRUJANJEM
NA OSNOVU DEFORMABILNOSTI TELA

Samir Hanchi, Radomir Askovic

Razvoj dvodimenzionalnog viskoznog strujanja nestišljivog fluida nastalog usled kretanja
deformabilnog kružnog cilindra koji impulsivno kreće u pravolinijsko kretanje se proučava
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numerički za Rejnoldsove brojeve od 550 i 1000. Jednačina transporta vrtložnosti je rešena
metodom konačnih razlika drugog reda u oba pravca posmatrane oblasti. Poisson-ova jednačina
za strujnu funkciju je rešena pomoću Fourier-Galerkin metoda u jednom pravcu strujanja, za koji
se pretpostavlja da konačne razlike ostaju simetrične i drugog reda. Vremenski pomeraji su drugog
reda Adams-Boshforth-a. Proračunati rezultati se upoređuju kvalitativno sa eksperimentalnim i
numeričkim rezultatima koji su dobijeni ranije za slučaj nedeformabilnog tela. Poređenja koja su
izvršena su sasvim zadovoljavajuća.


