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Abstract. In paper analysis of normal vibrations in broad classes near-conservative
finite-dimensional systems is done by utilized perturbation methodology.

1. INTRODUCTION

Nonlinear normal vibrations modes are a generalization of normal (principal)
vibrations of linear systems. In the normal mode a finite-dimensional system behaves like
a conservative one having a single degree of freedom. In this case all position coordinates
can be well defined from any one of them by

)(xpx ii =    )...,,3,2,1,( 1 nixx =≡ , (1)

pi(x) being analytical functions [1-3]. Rosenberg [4,5] was the first to introduce broad
classes of essentially nonlinear conservative systems allowing normal vibrations with
rectilinear trajectories in a configuration space:

)...,,3,2(1 nixkx ii == (2)

For instance, homogeneous systems whose potential is an even homogeneous function
of the variables belong to such a class. It is interesting to note that the number of modes
of normal vibrations in the nonlinear case can exceed the number of degrees of freedom.
In systems of a more general type, trajectories of normal vibrations are curvilinear. In the
[1-3] the power series method was proposed for the construction of above mentioned
trajectories.

Here, a perturbation methodology is utilized to the analysis of normal vibrations in
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broad classes near-conservative finite-dimensional nonlinear systems.

2. NORMAL VIBRTATIONS IN NEAR-CONSERVATIVE NON-AUTONOMOUS
NONLINEAR SYSTEMS

It is well-known that forced vibrations in nonlinear systems with one degree of
freedom are similar to those in an undisturbed conservative system (for small periodic
disturbances in the resonance region). In this subsection, we shall construct resonance
periodic solutions for finite-dimensional non-autonomous systems that will be close to
normal vibrations in the corresponding conservative systems. It turns out that in these
modes, a non-autonomous system behaves similarly to a conservative system with one
degree of freedom. Therefore, it is worthwhile to consider normal vibrations in non-
autonomous systems. Rauscher’s ideas are used in the construction of the resonance
solutions, the method leading to equations for trajectories in a configurational space.

The ideas underlying the Rauscher method were used for analyses of normal
vibrations in non-autonomous systems previously [6]. The external periodic action is
written in terms of a function of a positional coordinate. To solve the problem, one
assumes that the force is proportional to the coordinate raised to such a power that the
resultant autonomous system is homogeneous.

It should be noted that periodic modes in non-autonomous systems close to Lyapunov
systems were thoroughly investigated by Malkin [7].

1. Let us consider a non-autonomous system defined by

)...,,2,1(0),,...,,,,()...,,,( 221121 nitxxxxxxfxxxx nninxi i
==+Π+ ε (3)

The functions fi are assumed to be analytical in xi, ix  and periodical in t with a period
T; a potential energy Π is subject to the limitations shown above, and ε is a small
parameter.

Let us assume that a non-disturbed conservative system (ε = 0) allows normal modes
of vibrations xi0 = kix10 (i = 2,...,n; ki are constants). Any summand may be regarded as a
disturbance if, due to its presence, the system ceases to belong to a class that allows
normal vibrations with rectilinear trajectories.

Once again, for the ease of analysis a coordinate system is introduced in which all
ki = 0, so that xi0 ≡ 0 (i = 2,3,...,n).

Let us find a resonance periodic mode in which the non-autonomous system (3)
shows behavior similar to that of a conservative system with one degree of freedom [8].
Let us describe the motion in this “arbitrary” conservative system by a variable x ≡ xi.

Let us first write the energy integral for the “arbitrary” conservative system with one
degree of freedom:

)(),()0...,0,(
2

2
εεε hxFxx =+Π+ (4)

where h(ε)is the energy constant.
All variables pertaining to the periodic solution are introduced as single-valued

functions of x, at least within a half of the period:
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),( εxxx ii = , ),( εxxx = , ),( εxxx ii = , ),( εxtt = ,

Here, x  is defined as a function of x by (4) while t, as a function of x, is defined in
accordance with the principal idea of the Rauscher method by (4) through the following
quadrature:

∫ −Π−
=+

x

x
Fh

dxt
)0(

),()0...,0,()(2
1),(

εξεξε
ξφε (5)

In what follows, the phase φ is so selected that the condition x(0) = 0, when x(0) = x,
is satisfied. In this case h(ε) and x are related by the following equation which is implied
by (4):

)(),()0...,0,( εεε hxFx =+Π (6)

Since the series expansion of the potential begins with even-pover terms, for each
given value of h(ε) there are two corresponding amplitude values x = xj (j = 1,2).

The equations governing the trajectory xi(x) (i = 1,23,...,n) may be obtained from (3)
by the use of the energy integral (4) of the arbitrary conservative system. On introducing
a new independent variable x instead of t, one obtains

)...,,3,2(           0))(...,),(),(,())(...),(,(
))](...,),(),(,())(...),(,([))((

22

212
'2"

nixtxxxxxfxxxxx
xtxxxxxfxxxxxxxxx
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i
==−Π+

+−Π−+
ε

ε
(7)

Here and henceforth, a prime denotes differentiation with respect to x .
When x = xj (j = 1,2) and 0=x , we obtain additional conditions from (7):

)2,1;...,3,2(

0|))}(...,)(),(),(,())(...),(,(
))](...,)(),(),(,())(...),(,([{
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(8)

Eqs. (7) in combination with conditions (8) allow a univalent determination of xi(x).
It is evident from )()()( ' xxxxxx ii =  that the functions xi(x) are unambiguously

defined by the functions xi(x) and )(xx .
Finally, two other conditions should be added. Firstly, the periodicity condition is

needed that follows from (5):

∫ −Π−
=+

),()0...,0,()(2
1

εξεξε
ξφ

Fh
dT (9)

An equation of motion for a resonance mode is obained from (3):

0))(),(),(...),(),(),(,())(...,),(,( 222 =+Π+ xtxxxxxxxxxxxfxxxxxx nnnxi
ε (10)

Comparing (2) with (8), we find that

)],()0,...0,([))(...),(),(),(,())(...,),(,( 222 εεε xFx
dx
dxtxxxxxxxfxxxxx nx +Π=+Π , whence
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)]0,...0,([))(...),(),(,())(...,),(,(),( 22 x
dx
dxtxxxxxfxxxxxx

dx
dF

nx Π−+Π= εεε (11)

F(x,ε) may be found from (11).
Secondly, the periodicity condition should now be supplemented by a condition

stating that the work of all forces performed during the period equals zero:

[ ] ( )[ ] 0)(...,),(),(,)0...,,0,())(...,),(,(),( 22 =+Π−Π≡∫∫ ξξξξξεξ
ξ

ξξξξεξ
ξ

dtxxf
d
dxxd

d
dF

nx (12)

Here, the integral refers to the period of the vibrations. Conditions (9) and (12) are
needed in order to find the energy h(ε)and the phase φ for the solution.

Using relationships (4) through (12), one may find all characteristics of the resonance
mode (of normal vibrations) in the system (3) by the iteration process.

2. As stated above, xi0 = 0 in the zeroth approximation. Eq. (4) implies that
)]0,...,0,([22

0 xhx Π−= . From (5) one finds

∫ Π−
=+

x

x
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dxt
)0( 0
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1)0,(
ξ
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Finally, the periodicity condition has the following from:

∫ Π−
=+

0 0
0

)0,...,0,(2
1

ξ
ξφ

h
dT  (13)

Let us define the constant h0 from this condition. Since for a conservative system (at
ε = 0) condition (12) hold identically, one clearly may assume that φ0 = 0. Condition (6)
in the yeroth approximation takes the form

0)0,...0,( hx =Π (14)

that permits to obtain the amplitudes )2,1()0( =jx j .

Let us now write all the necessary relationships for the first approximation in ε, first
of all (7) that define the trajectory xi1(x), together with the “boundary” conditions (8):

0))(,0,...,0),(,()0,...0,(

))](...,,0),(,()0,...0,([))((
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These equations and boundary conditions are formally identical to the respective
relationships for a conservative system [1-3].

This implies, however, that a single-valued analytical solution may be found that will
satisfy Eqs. (15) and additional conditions (16) under the same limitations imposed on the
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generating system as in [1-3].
The next step in our search for solution is to find the “additional potential energy”

F(x,ε) from (11) in the first approximation with respect to ε :

))(,0,...,0),(,()0,...0,()( 001
2

1
1

xtxxxfxxx
dx
dF

jxx

n

j
k +Π= ∑

=

The function F1(x,ε) is obtained by integrating; the integration constant here has a
meaning of a correction to the energy h0 of the generating solution (recall that we are
dealing with the energy integral of an “arbitrary” conservative system with one degree of
freedom). In the first approximation with respect to ε, one obtains

∫ −Π−+
=+
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One can now refer to the periodicity condition (9) and the condition (12) in the first
approximation with respect to ε:
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=+
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Here, the last integral may also be calculated with respect to t by integration from 0 to
T on substituting dtxd )(0 ξξ = .

The first equality allows to find a “correction” to the energy h1, and the second one
will yield the phase φ1 of the solution in the first approximation with respect to ε.
Moreover, the amplitudes )2,1()1( =jx j  in this approximation are defined by

)1(|))](,0,...0),(,())(),...(,([ 00112110
jxxn xtxxxfxxxxxhh =+Π=+ εεεε

The periodicity condition (9) is not solvable in the first and subsequent
approximations unless h0 is a nonmultiple root of (14) and the amplitudes )1(

2,1x  related to
h0 are nonmultiple roots of (13).

This implies, however, that the generating systems connot be linear, for the latter have
only multiple roots of the periodicity equation (13) due to the isochronism. This
conclusion is another proof of the importance of studying normal vibrations in nonlinear
conservative systems.

It follows from the roots of (13) being nonmultiple that the case in which equilibrium
positions occur at the boundray should be excluded from consideration.

It goes without saying that the condition P'(φ) ≠ 0  should be satisfied as well.
In the subsequent approximations with respect to ε, the solution is calculated by the

iteration process or through the use of small parameter series in a similar way.
If conditions of the form (11) are satisfied and the roots of (6), (9) and (12) are
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nonmultiple, resonance normal vibration mode in a non-autonomous system (3) thus
correspond to any normal mode of vibrations in a nondisturbed conservative system in
the limit of ε = 0. The number of resonance modes is defined by the number of roots of
the equation that governs the phase of the generating solution. For each value of the
phase, there is a special corresponding value of the amplitudes x1,2 of the energy h and,
accordingly, a special resonance normal mode of vibrations.

It should be noted that the application of the Rauscher method results in the initial
system being reduced in the sought-for mode to a conservative one at each step of the
construction process.

3. NORMAL VIBRATIONS IN SELF-EXITED SYSTEMS

It will be demonstrated that the algorithms for analysis of normal vibrations are
applicable to near-conservative nonlinear autonomous systems with small self-excited
disturbances. Consider the following quasiconservative system:

0),,...,,(),...,,( 1121
' =+Π+ nninxi xxxxgxxxx

i
ε (17)

where ε is a small parameter, and the functions gi may be nonlinear with respect to ix .
The system may involve friction of any physical nature, such as viscous, dry or turbulent.
The conditions that assure occurrence of self-excited vibrations (limiting cycles) are
discussed later.

Assume that a conservative system (ε = 0) permits normal modes of vibrations of the
form (2).

Consider one of these solutions as a generating one. Rotating the coordinate axes, so
that the new x-axis is directed along the rectilinear trajectory, one obtain a generating
solution in the new coordinates as, xj0 = 0 (i = 2,3,...,n), x1 ≡ x = x(t).

On introducing a new independent variable x instead of t, one obtains the equations
describing the trajectories of normal vibrations
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Here and henceforth, a prime denotes differentiation with respect to x;
xxxxx )()( '

22 = .
When x = xj (j = 1,2) and 0=x , we obtain additional conditions from (18):
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Here (x, x2(x),...,xn(x)) being the trajectory return points. Eqs. (18) in combination
with conditions (19) allow a univalent determination of xi(x).

All variables pertaining to the periodic solution are introduced as single-valued
functions of  x ≡ x1:

),(),,( εε xxxxxx ii == (20)
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In the zeroth approximation )]0,...,0,([22
0 xhx Π−= , where h is the energy of the

nondisturbed system. We shall restrict our consideration of (20) to the first approximation
in ε:
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In this approximation, the boundray conditions are obtained from (19) at 00 =x ,
x = xj ( j = 1,2):
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This type of equations and boundary conditions was discussed in [1-3]. The power
series method may be applied to finding xi1(x). Let the trajectory xi1(x) be defined in the
first approximation with respect to ε. We shall now turn to an analysis of the motion x(t)
in time:

0...)),(),(),(,())(...,),(,( 2212 =+Π+ xxxxxxxgxxxxxx nx ε

Here, the equation of phase trajectories is of the form )( vx =

v
vxxxxvxgxxxxx

dx
dv nx ...))(),(,,())(),...,(,( '

2212 ε+Π−=

In the general case, one has to employ approximate methods to find all phase
trajectories, and due allowance is to be made for the small values of ε . However, this
equation allows ecact integration if g1 is a linear function with respect to w = v2.

At a closed phase trajectory of the limiting cycle, the system behavior is similar to
that of a conservative system with one degree of freedom. Therefore, the condition that
the work of all forces over the period is equal to zero should hold:

0),...)(),(),(,( 221 =∫ dxxxxxxxxg (23)

The integral is taken over the period of vibrations. This condition is used to find the
value of the energy h (and accordingly the amplitude values of xj) for the generating
solution of the conservative system, that is the limiting solution (at ε tending to zero) for
the sought-for self-excited vibrations of the system (17).

4. EXAMPLES

1. As a simple example, let us consider two linearly bound Van-der-Paul oscillators
with nonlinear elastic characteristics:

0)1()( 1
2
121

3
111 =−+−+++ xxxxxxx αβα

0)1()( 2
2
212

3
222 =−+−+++ xxxxxxx αγβα
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Two vibration modes may be singled out in the zeroth approximation: x = ± x2. Let us
introduce new coordinates x, y as follows:

xxx =+ 21 ,     yxx =− 21 .

In the new coordinates, one of the vibration modes is governed by y = 0, x0 = x0(t) in
the zeroth approximation, and

3
00 4

xxx α−−= ,   
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0
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An equation describing the trajectory y(x) in the first approximation with respect to ε
has the form
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The equation should be solved together with boundary conditions of the form (22) (at
00 =x , Qx =0 ):

0
4

321)()()( 2
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'
1 =





 +++ QQyQxQy αβ (25)

Substituting the solution y(x) as a power series into (21), we obtain a set of recurrent
equations in the expansion coefficients. One must also use the condition (22). Let
α = 1.5; β = 1.5; γ = 0.5; ε = 0.2. In the first approximation, the equations yield a
trajectory γ ≅  0.1317 - 0,0072x2 - 0,0001x4; x(0) = Q = 4 (quasiharmonic approximation)
for one vibration mode and x ≅  0.0577 - 0,0023y2 - 0,0001y4; y(0) = Q = 4; for the other
via similar calculations. There is a good agreement between the approximation solution
and checking numerical calculations by the computer. The numerical calculations show
that only “in-phase mode” (which is close to the trajectory x2 = x1) is stable.

2. Another example refers to the problem of vibrations of a plate in a flow of gas. The
system is assumed to have two degrees of freedom. Here, 1q  is the vertical displacement
of the plate and q2 is the angle of rotation. Both the restoring force P(q1) and the restoring
moment M(q2) is nonlinear:

1
2
1211 )()( qqddqP += ,  2

2
2432 )()( qqddqM +=

where d1, d2, d3, d4 are coefficients depending on the elastic characteristics of the plate.
The aerodynamic lift is







−≅=

3
222sin)(

3
2

2
2

2
2

2
qqvqvqA σσ

where v is the flow velocity, and σ is dependent of the flow density and the foil
aerodynamic chord.

Let ρ be the radius of inertia of the section mass with respect to the bend center axis, l
the distance from the center of rigidity to center of mass, and m is the mass of the plate
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per unit length. The equations of motion for the system are
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The analysis of vibration modes for the system (26) is based on the assumption that
the values of d3 and d4 are close to those of d1 and d2 respectively, the sum ρ2 + l2 is close
to unity and l2 is much smaller than unity.

In order to find vibration modes, let us use equations (21) and boundary conditions
(22). The results of the calculations haven`t written out but it should be noted that the
vibration modes are close to straight lines. Therefore it seems worthwhile to employ the
equations for finding approximate forms of vibrations of the type q2 = kq1, k = const. In
order to find k, one substitute the solution q2 = kq1 into the equations (4) and ensure that
the orthogonality condition is satisfied at q1 =  q1(0) = Q, q1(0) = 0.

One thus obtains an algebraic equation of the form
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Note that when the value of v  is not too high, we obtain four real values of k with
four vibration modes corresponding to them. If the values of parameters are same as
given above and Q = 1 (q2 ≅  kq1), one arrives at:

v2 = 0: k1 = -1.025, k2 = 0,465, k3 = 1.151, k4 = 3.409,
v2 = 0.2: k1 = -1.043, k2 = 0,492, k3 = 1.109, k4 = 2.185,
v2 = 0.42: k1 = -1.059, k2 = 0,536, k3 = 1.008, k4 = 1.630,
v2 = 0.6: k1 = -1.073, k2 = 0,687, k3 = 0.721, k4 = 1.403.

As v2 increases, the modes q2 ≅  k2q1 and q2 ≅  k3q1 vanish in a certain limiting point.
It is easy to check that the potentiality condition (23) for the system at hand is

identically satisfied for any vibration mode defined by an analytical function y(x) or x(y),
and therefore normal vibrations are dependent on two free parameters, namely the
vibration amplitude Q and the phase φ.
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NORMALNE OSCILACIJE U SKORO KONZERVATIVNOM
SAMOPOBUĐENOM I NEAUTONOMNOM

NELINEARNOM SISTEMU
Yu. V. Mikhlin

U radu su pomoću perturbacione metodologije analizirane normalne oscilacije u širokoj klasi
konačno dimenzionih skoro konzervativnih sistema.


