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Abstract. The paper deals with 3D viscoplastic strain of a rectangular block made of
AISI 316H austenitic stainless steel. One of its sides is loaded by constant normal stress
whereas two lateral side surfaces are acted upon by harmonically variable shear stress.
it is experimentally observed that such temporal variation induces progressive but
saturated increase of axial strain in the direction of tension stress components. The
strain rate is of the order of 0.001 [s]. The problem is treated by two constitutive
models:

a) Chaboche's model with incorporated evolution equations for back stress and
equivalent flow stress (its 8 material constants are take from [6]) and

b) the model explained in [15], based on tensor representations where plastic stretching
is second order polynomial in stress and linear in plastic strain (having 6 material
constants). Comparison with experiments has shown superioity of the second model.

1. INTRODUCTION

Steel mantel of nuclear reactors composed of austenitic stainless steels is exposed

during its exploitation to time dependent stress-strain histories.

As a consequence, three typical types of response could appear:

- Incremental collapse is characteriyed by an increase of the mean stress curve up to
fracture. Deviations around this curve are steady changing with unperturbed
frequency.

- Low cycle fatigue takes case with a constant mean stress and the other features are
the same as in the previous case of behaviour.

- Elastic vibrations (shakedown) appearing as a consequence of the corresponding
decrease of amplitudes of plastic strain vibrations. Hence, behaviour of the material
body is such that stress tensor enters elastic region i.e. interior of the yield surface in
the stress space.
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The case of plastic saturation when stress frequency in “universal” flow curve
diagram (i.e. equivalent Mises stress versus accumulated plastic strain) increases is of
special interest. Such a behaviour is called ratchetting. It has been shown to take case at
multiaxial stress-strain histories especially at nuclear reactors where such histories
usually appear.

The paper deals with the problem of constant normal stress and a harmonically
variable shear stress. Ratchetting predictions of the models presented in papers [3] and
[15] are compared. Relevant stress amplitudes and shear stress frequency are chosen in
such a way to be comparable with ratchetting experiments reported in [7]. The equivalent
plastic strain rate is of the order of magnitude of 10~ [s™'] which corresponds to low
strain rates.

2. PRELIMINARY CONSIDERATIONS AND PROBLEM STATEMENT

For finite elastoplastic strains it is commonly accepted that aside of undeformed
configuration B, and deformed current configuration B there exists a local reference
configuration of natural state elements B,. Then, Kroners's decomposition rule [1,2]
holds in the following form:

F, =F;'F (1)

where are:

F - deformation gradient tensor,

F; - the elastic distortion tensor and

Fp - the plastic distortion tensor,
determined by the mappings By - B, B, - B and B, - B, respectively. Let us apply the
polar decomposition theorem on the plastic distortion tensor by means of

Fp =RpUp = VpRp
where R =R holds for the plastic rotation tensor.
Then as an invariant measure of plastic strain the Hill's logarithmic tensor
ep =InV, =0.5In(F,F}) ()

is chosen. Its principal advantage lies in the fact that it is a deviatoric tensor. In other
words, its three principal invariants read:

m=tre,=0, T,=tre;#0, 1, =tre; 20, 3)

if plastic volume change is neglected. Then plastic stretching tensor equals:

21n(l +ep) 0 0 0
D, =%%E 0 ~In(l+ep) ve O (4)
H Yp ~In(1 +e, )

determined by the symmetric part of plastic “velocity gradient” tensor
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L, =F.F;'.

As usual the superimposed dot stands for material time derivative.

Consider now a problem of three-dimensional straining of a rectangular
parallelepiped. Two of its opposite sides are acted upon by constant normal stresses
whereas on two lateral sides two harmonically variable shear stresses act. The loading
scheme is shown at the following figure.

Cauchy stress tensor and Piola-Kirchhoff stress tensor now read:

o 0 00
T:H) 0 rH S=F;'TF;” =T (5)

Dt o

o =const, T=T;sin(x).

where
X
3

Y

O o

A

Fig. 1. Loading of the considered body

X

It should by underlined that the second of the above tensors is defined with respect to
local reference configuration B, and that for small elastic strains

[Fef =1

if elastic rotations are also very small. On the other hand, the plastic distortion tensor
equals

a o 05%(,% 0 00 o 0o O
_E) O - -1 40

Fp = 1 VPDBO Xp 0 EBO Xp  YeXp B, (6)
H o 1550 0 x;HE0 0 xi' g

where notation Xf, =1+e, is applied. For a given stress history T(¢) a response of the

material body determined by plastic strain history is looked for. We apply additional
condition on stress history

%"T(t)" <16 [MPa/s|

in order to keep strain rates in the low range of the order of magnitude <107 [s™'].
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3. MODEL OF CHABOCHE

For a description of a viscoplastic body Chaboche .3. has generaliyed Perzyna's
model to account for an evolution of the residual stress. His evolution equations might be
written as follows:

e =(F22) TezBe ppr, o) Y
B, =c(4D, -B,p)-T|B,|" By, (®)

p :m , ©)
D=bQ-D)p, (10)

where:
€p =Dp - the plastic strain rate (approximately equal to plastic stretching for small
strains range),
B - the residual stress (back stress tensor),
D - astatic equivalent flow stress,
p - the accumulated plastic strain scalar and
A. = {kn,c,A,I ,;m,b,0}- a set of material constants to be determined from experiments.
Here the traditional notations for a second tensor intensity as well as its deviatoric
part are employed

|A|= @A) = (A4, 4,=A —%m,

while plastic loading indicator function is determined by means of <x> =0 if x=0 or0

if x<0.
An identification of material constants has been made in [6] on the basis of

experiments for standard cyclic tension-compression test as well as cyclic torsion test.
Their values for AISI 316H as reported in [6] read:

A, = {68.38,5.8,65,113.33,8.70107'°,1.3,8.8,220.45} (11)

For the problem presented in previous section, deviatoric residual stress (cf. also .6.)
equals to:

@B, 0 0[O

B, -1Hy -B, 3B, H, (12)

’ H 0 3By - BLE
such that

F:\E« 8,Y +3(-5,) (13)

We are giong to consider a relatively small cycle number. This makes possible to
neglect the material constant I'. This simplifies the set (7)-(10) such that it becomes:
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. _2/F-D\"0o-B, . F-D\"1-B; )

g, =22\ 95 (2 71 7

r 3< k > F Ve < k > F ™)
) , . I

B =cPae,-pp B B, =cEay, -5 H ®

L ) P PLD T ) Yp PTD )

(a1, ,

P=Ep+2Vp s C))

D=b(0-D)p, (10%)

where we introduced the notation £, =In(1+ep) =ep such that £, =ép.

It is worthy of note that Chaboche's model is developed for small strains only. Taking
this fact into account we may simplify logarithmic strain tensor (2) into the following
form:

g 0 %8
eP=anP=EDO -ep Yp O (14)
HO Yp _ePH

The evolution equations (7°) - (10’) have been integrated numerically for a simulatd
stress controlled test with normal stress o=245[MPa], shear stress amplitude
To = 75 [MPa] and shear stress frequency w= 0.5 [rad/s] for 10 stress cycles. Such special
choice of history parameters is made in order to acquire results comparable with
experimental data reported in [7]. These experiments have been made with AISI 316H
with constant tension of 250 [MPa], maximal shear strain of 2.6% and amplitude of shear
strain equal to 0.17%. Number of experimental cycles was 10.

Result of integration of evolution equations (7°) - (10°) with material constants (11)
and I = 0 are presented on the following figure. Aside of time-plastic strain components
plots the so-called universal flow curve (i.e. equivalent stress versus accumulated plastic
strain) as well as phase portrait of plastic strain components are given. The densification
feature characteristic for ratchetting has been observed at the “universal” flow curve.
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Fig. 2. Ratchetting under stress control simulated by Chaboche's model
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4. AN OVERSTRESS MODEL WITH RICE-ZIEGLER NORMALITY

As a new model let us take the generalization of Rice's model by means of tensor
representation approach as given in [15]. Rice's model [14] by itself is based on
normality of plastic strain rate tensor on a loading function Q taking account of
microstructural rearrangements during plastic straining. Translated to finite strains and
with Ziegler's modification derived from the notion of least irreversible force, the
evolution equation reads:

0Q
Dy, =A— 15
r=N3g (15)

where the microstructural rearrangements are supposed to be completely determined by
the plastic strain tensor given by (2).

An essential generaliyation of this model was given in [15]. In this paper the loading
function was assumed to depend on the following set

Q=Q(y), y=(S;, S5, W, K3) (16)
of proper and mixed invariants of stress and plastic strain tensors
S, =t8;, S;=uS),
W =trS.ep,  py =trSiep. (17)

If we take for plastic stretching a second order approximation in stress and linear
approximation in plastic strain, we get the following formula

_ 1
NDp = (4 Asf)S g + Ay (S3)g + 5 45280 + Au(Sy€p +€58,), (18)

where again subscript “d” denotes the deviatoric part of a second rank tensor. Let us
introduce the overstress tensor

BX=S-§ . (19)

Moreover, we need to know direction of S”. Let us assume that dynamic stress S as
well as static stress S° have the same direction. This is justified by the hypothetical
nature of the static stress namely it is just a projection of the dynamic stress tensor to the
yield surface in the stress space. Hence

S, =M, S;=ySM, (20)

where a unit tensor M with the property #"M” = 1 is introduced. Let us denote the initial
static yield by Y i.e. YO2 = S;O and a relative equivalent overstress by means of

- _[s [s;
A:heq _heq = ﬁ - f . (21)
0 0

The scalar coefficient A is obtained from the condition that plastic stretching vanishes
when overstress equals to zero. Then evolution equation takes its final form:
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Dp =A[4S, + A, (Syep +€pSy) ]+

0 1 22)
N %42(S§l)d +4; @-llsd +5523P

On the basis of experimental data for tension and shear of AISI 316H [16] material
constants of this model are here found to read

Ac = {Ala A27 A?:’ A47 Alv AZ} =

23
{0.01181, 0.01033, —0.008012, —0.01978, 20, 0.2} 3)

by means of Nelder-Mead method of analyzing chi-square functional. The two new
constants A; and A, appearing in (23) arrive from the usual approximation of static
equivalent flow stress:

hy, = (1+ A p) (24)

where p is the accumulated plastic strain. The governing set of differential equations is
obtained from (22) by replacing constants (23) into it. Its integration for the given stress
history produced the results shown on the following figure.
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Fig. 3. Ratchetting with stress control for overstress model
with generalized Rice-Ziegler normality

5. COMPARISONS AND CONCLUDING REMARKS

In papers [7, 8, 9, 10] the authors have investigated ratchetting behaviour at combined
tension-torsion tests. On the other hand, the papers [12] deals with tension tests only. For
the comparison purposes the paper [7] is especially convenient since its loading
programme was such that after 10 cycles the maximal normal strain was 2.6% at the
corresponding tension stress of 250 [MPa] and a prescribed harmonically changed shear
strain whose amplitude was 0.17%. Of course, the specimens tested were made of the
stainless steel AISI 316H.
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Examining situation of the end point of the phase trajectory calculated by the

Chaboche model (figure 2) we see that at these conditions the maximal normal strain has

the

value of 0.18% which means that the predicted strain is approximately 15 times

smaller than the corresponding experimentally acquired strain.

On the other hand, the phase trajectory depicted on the figure 3. gives the maximal

tension strain equal to 2.4%. Therefore the relative error amounts to 8%.

10.

11.

12.

14.

15.

A short conclusion could be formulated as follows:

- Although handicapped by the absence of compression data which are essential for a
good cyclic behaviour prediction, the tensor representation model [15] has been
shown to cover multiaxial variable stress-strain histories in a surprisingly good way.
An eventual inclusion of the residual stress tensor into (22) would even improve the
predicting abilities of the tensor representation based viscoplasticity models. This
depends on available experimental data bank and not on theoretical considerations.
Both models for the given number of stress cycles do not forecast a commence of
elastic strain vibrations i.e. the shakedown behaviour (cf. also [13]). However the
model of Chaboche aside of poor predictions gives the results very near to these
vibrations.
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POJAVA RACETINGA KOD CELIKA AISI 316H
PRI MALIM BRZINAMA DEFORMACIJE

Milan Mic¢unovi¢, Dejan Veljkovié¢

U radu se razmatra problem 3D viskoplasticne deformacije paralelopipeda sacinjenog od
nerdajuceg austenitnog celika AISI 316H (prema SAE-oznakama). Njegove dve suprotne strane su
napadnute konstantnim normalnim naponom, dok na dve suprotne bocne strane deluje harmonijski
promenljiv smicuéi napon. Eksperimentalno je utvrdeno da takva vremenska promena napona
izaziva progresivni ali zasiéeni prirastaj uzduzne deformacije u pravcu dejstva normalnog napona.
Korisc¢ena su sledeca dva konstitutivna modela:

a)  Chaboche-ov model sa ukljucenim evolucionim jednacinama za rezidualni tenzor napona

i ekvivalentni napon tecenja (sa 8 materijalnih konstanata koje su uzete iz [6]),

b)  model objasnjen u [15], zasnovan na tenzorskoj reprezentaciji gde je tenzor brzine
plasticne deformacije aproksimiran polinomom drugog stepena po naponu, a linearan je
po plasticnoj deformaciji. Model sadrzi 6 materijalnih konstanata koje su u ovom radu
kalibrisane na osnovu eksperimenata [16].

Uporedenje sa eksperimentima je pokazalo superiornost drugog modela za opisivanje viseosnih

vremenski promenljivih naponsko-deformacionih istorija.



