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Abstract. Finite element method provides only the numerical simulation of a real
behaviour of the observed physical problem. Hence, it is particularly important to have
a reliable stress recovery technique and also the tools for error estimates of calculated
stresses. In this paper a stress recovery procedure, based not on the conventionally
calculated stresses but on the displacements, is studied in detail. Another useful
property of the proposed approach is that all expressions are coordinate independent.
These features have the following implications. First, a global continuous stress field is
obtained directly from displacements and second, there is a possibility to use different
coordinate systems at each global node.

Along with a basic demand for reliability of a mathematical model, there is also an
important question of a solution time needed for the accuracy required. It has been
shown by the numerical evidence that proposed procedure evidently increases the
quality of finite element (FE) solution and, for finer meshes, can even reduce the
solution time, at least compared with the simplest form of stress averaging, i.e. the
arithmetic mean of nodal stresses from neighbouring elements.

1. INTRODUCTION

In the continuum mechanics problems, along with the determination of displacements
and strains, stresses occur as variables of primary interest. Usually, the stress prediction is
of crucial importance in the structural analysis. In the classical finite element method
displacements are state variables and they are continuous over a model. It is known that
strains and stresses are related by constitutive equation and hence, at least in elasticity,
the stresses are proportional to the gradients of displacements. In the usual case when C0
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continuity for displacements is satisfied, raw finite element (FE) stresses are
discontinuous at the interelement boundaries. Discontinuity is a main problem in the
stress results interpretation for an average user, expecting continuous stress distribution
throughout the model. Fortunately, the theory of finite elements has been expanded to
overcome this ambiguous situation and different stress smoothing procedures and stress
recovery techniques have been introduced.

It is well known that the accuracy of the analysis of a well–posed FE model depends
on the number of elements in the finite element mesh, and that quality of a solution can
be improved by the mesh refinement. However, increase of the mesh density drastically
raises the solution time. Obviously, an acceptable stress recovery procedure should
deliver accurate enough continuous stresses over the model in a reasonable time. In
addition, derivative recovery techniques are used for error estimates in adaptive finite
element procedures.

There are two general classes of the stress smoothing procedures [1,2,3]. If carried out
over a whole finite element domain the procedure is known as a global smoothing. Local
smoothing is performed at each node or small group of nodes. One of the simplest local
smoothing procedures is the averaging of stresses from neighbouring elements at a
particular common node. For the purpose of the present paper the procedure is named
FEAavrg.

However, all these approaches including also innovative [4] ones, are based on the
conventionally calculated stresses. Hence, all known approaches are scalar, which means
that they approximate only one stress component at a time. It has been shown in [5] that
to maintain invariance of the finite element approximations under the coordinate
transformations, tensorial character of these approximations should be strictly respected.

A significant novelty of the proposed procedure should be pointed out – it is both
global and tensorial. These two features, along with high accuracy and computational
efficiency, are combined in the present FEDSS method.

2. FEDSS METHOD

As it has been already noted, at variance with the prevailing number of usual
approaches, proposed FEDSS (Finite Element Displacement type Stress Smoothing)
procedure is based not on the conventionally calculated stresses, but on the
displacements. This technique is inspired with some results in [6], related to the two-field
finite element models. Nevertheless, it has been shown that similar ideas can be applied
in the stress recovery problems.

Proposed method has its basic application as a stress smoothing procedure. Since its
smoothing scheme is expected to be more efficient than these of more popular local
procedures, at least than that of FEAavrg,, it can be used also for error estimation. We
also emphasize that tensorial character of approximations allows a priori introduction of
arbitrary coordinate systems, at all global nodes of a model, for which the continuous
stresses will be interpreted. Also, one can use a different set of nodal coordinate systems
for the interpretation of displacements. The proposed approach is particularly useful for
the precise introduction of boundary conditions, either for displacement and stresses.
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2.1 Tensoral formulation

The aim of the present formulation is to obtain a system of linear equations having
values of known displacements at the right side and unknown values of nodal stress
components at the left side. One can start from linear constitutive equations in a form:

. t :e A= (1)

Let us remind that linear strain-displacement relationships are given by:

,)+(
2
1 Tuue ∇∇= (2)

So, similar as in [6], the stress–displacement relationships are given by:

,)(
2
1  Tuut: ∇+∇=A (3)

where t is the stress tensor, u the displacement vector, and A the elastic compliance
tensor. A weak solution of (3) one can get by the Galerkin procedure [7].

After recasting of all quantities in the coordinate form, one obtains the relationships:
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In these expressions tΓuv and uΠq are the stress component tΓuv at node Γ and

displacement component uq at node Π  respectively; 
)(e

K
ΛΩ  is the incidence matrix which

maps global nodes Λ onto the local nodes K of an element; PK  is a shape function
connected with the node K; symbols ( )g pqΠ  are the components of the contravariant
metric tensor at node Π;  indices p, q refer to the nodal coordinate system ( )x pΠ  used for
the displacements, while indices s, t, u, v refer to the nodal coordinate system ( )y sΛ  used
for stresses;  i, j, k, l are the indices of global Cartesian coordinate system zi of a model;
symbols gαβ are the components of the contravariant metric tensor in the interior of an
element and α, β, γ, δ are the indices of a local, element coordinate system ξα. Finally,
Aαβγδ are the contravariant components of the elastic compliance tensor. Omission of
indices (e) in (5), (6), etc., means global values of the quantities under consideration, i.e.,
simple summation of these.
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For flat two-dimensional and for three–dimensional configurations, one can use
Cartesian coordinates for the elastic compliance coefficients, and the expression (5) has
the following interpretation:
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2.2 Matrix representation of the proposed technique

Once the appropriate types of basis functions are selected and the correspondence
between local and global nodes evoked, coordinate systems at each global node chosen
(not necessarily different from the global coordinate system of a model) as input values
from FE preprocessing part, along with the given displacements, next steps are the
assembly of the expressions (5) and (6) for all elements and all global nodes in the system
matrices, and after that the solution of a system (4). Naturally, this should be done
automatically by the program code and the input values required are only the coordinate
systems data at global nodes, if different from global coordinate system of a model.
Matrix formulation will be made in the same manner as it has been done in [6]. Global
system of linear equations (4) has the following matrix representation:

}{}{][ q
q
st

uv
uvst uBt Π

Π
Λ

Γ
ΓΛ =A . (8)

Matrix ][ uvstΓΛA  is positive definite, symmetric and sparse. Coefficients (5) or (7) of
this matrix can be integrated analytically, but usually full Gaussian, or Lobatto type [1]
formulae are applied.

2.3 Comparison of the fedss and some more common stress recovery methods

Numerical results of the present procedure are, up to the order of the rounding error,
the same as in global stress smoothing methods proposed earlier by Oden and Brauchly
[2], Hinton and Campbell [3] and Zienkiewicz and Zhu [1] despite the fact that in the
kernel of the system matrices (5) or (7) we have elastic coefficients, while in the
aforementioned methods there are only the shape functions, PLPM, in the kernel. Of
course, the right hand side is also different. It should be however pointed out that, to get
identical results, the same set of the points of numerical integration should be taken for
both methods. The advantage of the proposed procedure is a fact that it can be directly
used in the case when only the displacements are available, either from theoretical
considerations, numerical analysis, or an experiment. In addition, at least in principle,
formulation (4) allows introduction of the stress boundary conditions as the essential
ones.

Also, special attention is paid to the tensorial invariance of the of proposed procedure.
Accordingly, the present formulation allows use of arbitrary coordinate systems, possibly
different at each observed node. Obviously, tensorial invariance can be kept
independently on the kind of the stress smoothing approach [8].

3. DETERMINATION OF THE STRAIN ENERGY AND APPROPRIATE NORMS

Obtaining of a reliable solution of an appropriate mathematical model is one of
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crucial demands posed in front of the FE end users in the engineering practice. Hence, a
new procedure intended to be introduced in a FE software must have a sound
mathematical basis and pass a serious numerical examination. When FE analysis (FEA)
is used it is known that in a typical situation only an approximate solution of the model
problem is computed. The main users’ question is how accurate are such results. There
are several ways of investigation of the FEA error. Commonly used way of determination
of an approximation error is by the use of an appropriate norm. If the discretization error
estimate for a given mesh is needed, it is practical to introduce energy (error) norm:
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In this expression t is an exact stress solution, th finite element stress, A the elastic
compliance tensor and Ω the domain of the model. It is usually taken as granted that
smoothed (continuous) stress field is “more accurate” than finite element discontinuous
stress pattern. Also, the strain energy:
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has been traditionally used [9] for estimation of accuracy and convergence of the
finite element solution. The popularity of above measure is partially due to a fact that it
is, at a system level, because of the First Law of Thermodynamics, equal to the work of
the external forces (at least for hyperelastic materials) which can be easily
calculated [11]. The energy of a finite element solution is obviously:
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Note once more that th is a finite element stress, dependent on the stress recovery
procedure. Now, one can introduce the total energy norm:

,2UU = (12)
or, more specifically:
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where index FEA denotes the value obtained by the straightforward application of the
classical FEA. It has been proven in [11] that the energy of the error of the finite element
solution is equal to the error of the energy, i.e.

.22 FEA
2 UUe −= (14)

As  simple differences between two scalar quantities, expressions of the type (14) can
be used for the determination of the energy difference between any two solutions of the
problem under consideration. At variance, the expressions of the type (9) calculate energy
error correctly only if the stresses under consideration are based on some global



518 DUBRAVKA MIJUCA, ZORAN DRAŠKOVIĆ, MLADEN BERKOVIĆ

projection procedure. The use of (9) in the case when th is not an orthogonal projection of
t, can seriously underestimate the energy error norm. To be perfectly clear, note that use
of (9) for the calculation of the energy error is justified if and only if t th   FEA= . Hence,
the popular use of (9) for the determination of the error of a smoothed solution
( t th  =  SMOOTH ) is overoptimistic and misleading. To avoid any ambiguity, for the
energy error determination in this paper we will use only the expressions of the type:

,22 SMOOTH
2

SMOOTH UUe −= (15)
or specifically:

,22 FEDSS
2

FEDSS UUe −= (16)

.22 FEAavrg
2

FEAavrg UUe −= (17)

It is easy now to define the relative percentage error [1] or precision [12] as:
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or specifically:
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When a largest local error is required, the supreme norm is usually applied. Per
instance,

jk
L

jk
LL

tte SMOOTH SMOOTH max  −=∞ (21)

is a largest stress error of the smoothed stress component tjk, obtained at  node L.

4. NUMERICAL EXAMPLE

In this section the quality of the proposed FEDSS stress recovery procedure is
illustrated by means of a plane stress numerical example. The problem of a square plate
with a circular hole [13] is shown on Figure 1. This problem is particularly interesting
due to high stress concentrations occurring in the regions where the coordinate axes
intersect the contour of a hole. Due to the symmetry, only the quarter of a plate is
analysed. Isotropic, homogeneous material properties and the plane stress behaviour are
assumed. Modulus of elasticity is 1 and Poisson’s ratio 0.3. Plain isoparametric four–
noded quadrilateral elements and 2×2 Gaussian quadrature are used. Estimated converged
value of the strain energy is U = 3.582, where at least three significant digits are
considered to be accurate.

Numerical studies were made for the sequence of meshes from 1×1 to 38×38. One of
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these (5×5) is shown on Figure 2.
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Fig.1. Plate with a circular hole Fig.2. Finite element mesh

One possible user defined set of coordinate systems, useful for the determination of
hoop stresses at global nodes is shown on Figure 3.
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Fig.3. User defined coordinate systems

Recovered FEDSS stresses are compared with stresses simply averaged at nodes,
FEAavrg. To study the effectiveness of FEDSS method as a stress recovery and
smoothing procedure two types of the error evolution were considered. First, relative
percentage error versus number of elements, and second, the same error as a function of
the execution time is examined.

Figure 4 shows a comparison of the relative percentage error versus the number of
degrees of freedom. As it can be seen, FEDSS formulation presented here is, especially
for reasonably dense (more than 5×5), meshes significantly more accurate in the energy
error norm than conventional smoothing, i.e. simple averaging of the stresses at nodes,
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FEAavrg.
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Fig.4. Energy error norm versus mesh density

It is also interesting to study the convergence rates for both procedures. From the
Figure 5 it is evident that the convergence rate of FEAavrg is somewhat higher than 1
(for dense meshes) while for FEDSS approaches 1.5.
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Even more important is a quantitative measure, i.e. the execution time for the
accuracy required. In Figure 6 relative errors related to the time of execution are
compared. It can be said that FEDSS stress recovery procedure, for finer meshes even
reduces the total solution time, despite the additional time necessary for the solution of
(5) for stresses. In fact, if an error in the energy norm smaller than 6% is required, the
proposed FEDSS procedure is more efficient than simple averaging.

Obviously, for the practical stress estimates it is not enough to check just a global
energy convergence, but also the local convergence in ||e||∞ norm, especially in the
regions of high stress concentrations. It can be seen on Figure 7 that hoop stress at A,
obtained either by the present FEDSS procedure (8) or by FEAavrg via Hookean law (3),
as the mesh is refined overcomes the theoretical value of 10.39, gradually approaching it
from above, for very fine meshes. For coarser meshes directly calculated stresses
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converge (Figs 7–9) seemingly faster than FEDSS stresses. However, for meshes finer
than 10×10 (Figs 8 and 9) the supremum norm error tends to be almost an order of
magnitude smaller when the stresses are recalculated by the use of the FEDSS procedure.
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It is also noteworthy that maximum local stresses are much more accurate than an
average stress error estimated on the basis of the energy norm (Figs 9 and 10). This
behaviour of the FE solution is obviously very desirable from the practical point of view.

5. CONCLUSIONS

A global, coordinate independent projection procedure for generation of a stress
continuous displacement field has been presented and applied to two-dimensional
elasticity problems. Proposed procedure can be recommended if high precision of
calculated stresses, both global and local, is needed. Another advantage of the present
algorithm is its flexibility (i.e. possibility to use arbitrary local coordinate systems). In
addition, it is implemented as an universal postprocessing routine for which the input data
(displacements) can be taken from any finite element analysis package, theory, or
experiment. Obviously, the proposed approach can be used not only as a postprocessing
procedure, but also as a precise tool in the adaptive mesh refinement algorithms.
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POUZDANO IZRAČUNAVANJE NAPONA U METODI
KONAČNIH ELEMENATA

Dubravka Mijuca, Zoran Drašković, Mladen Berković

U radu je predstavljena pouzdana, globalna, koordinatno nezavisna metoda izračunavanja
kontinualne naponske slike modela opterećenog tela. Metoda se bazira na poznatim pomeranjima,
koja mogu da budu određena eksperimentalno, teorijski ili numerički.


