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Abstract. The linear parabolic equation with the fast changing coefficients is
considered. The problem of construction of the transformation which realizes the
splitting of the initial equation is solved. The important role of integral manifolds in
solving this problem is established.
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1. INTRODUCTION

Let B be a basic separable Banach space, Hom(B,B) is the Banach space of linear
operators B→B with the operator norm. Consider the differential operator

)( tA
dt
dL ω+=ω ,

where A(t) is continuous and bounded on real axis R function in Hom(B,B) with uniform
average value
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N. N. Bogoljubov [1, 2] proved that the operator Lω was close by its properties to the
averaged operator
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A
dt
dL += .

Application of the classic methods leads to some difficulties which are stipulated by
the problem on considering unbounded operators. V. V. Zhykov [3,4] showed that the
operator Lω was not close to the averaged operator even in the simplest case when

AtA −)( is a bounded operator. Zhykov studied in detail the problems on regularity,
correctness, exponential dichotomy of the linear parabolic operators and the connection
of these problems with the problem of averaging on the real axis.

Conception of the exponential splitting is close to the conception of the exponential
dichotomy. M. G. Krein and Yu. L. Daletsky [5] established, that operator

A
dt
dL += ,

with the bounded operator - function A(t) in Hom(B,B) which admitted the exponential
splitting was stable with respect to perturbations small by norm.

In this paper we show that the problem on constructing of this splitting transformation
is connected with the problem on existing some linear integral manifolds of the initial
equation.

Let H be a Hilbert space with the scalar product ( , ). Reflexive space E with
conjugate space E* is called an enclosed space, if there is continuous and dense enclosure
E ⊂  H ⊂  E*, and a bilinear form y(x), y ∈  E*, x ∈  E coincides with scalar product on H, if
x, y ∈  H.

Linear operator A: E→E* is called the coercive operator or the strongly elliptic
operator, if the inequality 2

2
2

1 ||||||||),Re( HE xcxcxAx −≥ , where constants c1 > 0,
c2 > 0, holds. We can regard A as unbounded operator in H, if we represent the domain of
its definition by D = {x ∈  H: Ax ∈  H}. It is true, when we consider the spectrum of the
operator A [3]

The operator is called a parabolic operator, if A(t) is a continuous function in
Hom(E,E*) and the coercive condition is fulfilled uniformly with respect to t ∈  R. For the
parabolic operator the condition of solvability is fulfilled on the right, if the Hilbert space
H is a basis space. Let

21 HHH += , (1)

and H1 is the m-dimensional space. The decomposition E = E1 + E2, *
2

*
1

* EEE +=
corresponds to (1).

Definition 1. Let Φ(t) be continuous and bounded function with values in
Hom(E1,E2). We call a set σm ∈  R × E of the form

σm = {(t,u): u = x + Φ(t)x}

the m-dimensional linear integral manifold of the equation Lu = 0, if for each point
(t0,u0) ∈  σm this equation has a solution u(t) defined on R and satisfying the conditions
u(t0) = u0, (t,u(t)) ∈σ m for all t ∈  R.



Exponential Splitting of the Linear Parabolic Equation 643

Definition 2. We call a set σm ∈  R × E of the form

σm = {(t,u): u = F(t)y + y , F ∈  C(Hom(E2,E1))}

the m-codimensional linear integral manifold of the equation Lu = 0 if for each point
(t0,u0) ∈  σm this equation has a solution u(t) defined for t ≥ t0 and satisfying the
conditions u(t0) = u0, (t,u(t)) ∈  σm for all t ≥ t0.

2. EXISTENCE OF INTEGRAL MANIFOLDS

Consider the parabolic equation

0)( =




 ω+=ω utA

dt
duL ,

for ω >> 1.
Assume the following conditions:
1. Enclosure E ⊂  H is compact.
2. The space E* has an approximate property: there is sequence of the linear operators

**: EEPm → such that ∞→∈→⊂  mEyyyPEEP E
mm  , )(  , ** *

.
3. A(t) is compact function on R in Hom(E,E*) with a uniform average value.
4. There is µ such that ), Hom())(( 1 EECIAtA ∈µ+ − .
5. Operator

IA
dt
dIL µ++=µ+ ,

where µ is determined in 4, is regular.
6. 0)(Re ≥σ A and the proper subspace of operator A  corresponding to the spectral

set  }0Re:{)(0 =λλ∩σ=σ A  is m-dimensional
Remark. By virtue of the condition 6 the equation 0=uL  has a trivial m-dimensional

linear integral manifold and a trivial m-codimensional linear integral manifold. By
Theorem 1 these integral manifolds are stable with respect to perturbations which are
integrally small.

Theorem 1. Assume conditions 1 - 6. Then there exists ω0 such that for any ω > ω0
the following statements are valid.

1) Equation (1) has the m-dimensional linear integral manifold

σm : u = x + Φ(t,ω)x ,
for which Φ(t,ω) satisfies relation

0||),(||lim )),(Hom( 21
=ωΦ HECt .

Moreover the function Φ(t,ω) has a derivative which satisfies ),Hom(),( *
21 EECt ∈ωΦ .

2) Equation (1) has the m-codimensional linear integral manifold

σm : u = F(t,ω)y + y ,
for which F(t,ω)y  satisfies relation
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0||),(||lim ),Hom( 12
=ω

∞→ω
EECtF .

Moreover the function F(t,ω) has derivative locally integrable with square on the whole
real axis.

 Our techniques for proving Theorem I are much influenced by [7]. So, Theorem 1
follows from the statement which we formulate as Theorem 2.

Theorem 2. Assume the conditions of Theorem 1 and ω0 is defined as in Theorem 1.
Then for any ω > ω0 there exists µ > 0 such that for any point (τ,ξ) ∈  R × E1 the equation
(1) has a solution unique on the whole real axis

u(t,τ,ξ,ω) = x(t,τ,ξ,ω) + y(t,τ,ξ,ω),

for which x(τ,τ,ξ,ω) = ξ, e-µ|t-τ|y(t,τ,ξ,ω) is continuous and bounded function with the
value in E2. The derivative yt(t,τ,ξ,ω) is continuous function in *

2E . The mapping
τ→(x(⋅,τ,ξ,ω), y(⋅,τ,ξ,ω)) is continuously differentiated on the whole real line. Moreover
the function y(t,t,ξ,ω) satisfies the condition

0||),,,(||lim )( 2
=ωξ

∞→ω
HCtty .

There exists 0>µ such that for any point (τ,η) ∈  R × E2 the equation (1) has the solution
unique on semiaxis t ≥ τ

u(t,τ,ξ,ω) = x(t,τ,ξ,ω) + y(t,τ,ξ,ω)

for which y(t,τ,η,ω) = η, x(t,τ,η,ω)eµ(t-τ) = η, is bounded on [τ,∞) function and

∫
+

τ−µ τ≥∞<ωητ
1

2)(    allfor    ||),,,(||
t

t

s tdssxe .

The mapping τ→(x(⋅,τ,η,ω),y(⋅,τ,η,ω))  is continuously differentiated.
Moreover the function x(τ,τ,η,ω) satisfies the condition

0||),,,(||lim )( 1
=ωηττ

∞→ω
ECx .

From Theorem 2 follows:
Corollary. The function Φ(t,ω) defining the m-dimensional linear integral manifold

of the equation (1) is determined by
Φ(t,ω)ξ = y(τ,τ,ξ,ω).

The function F(t,ω) defining the m-codimensional linear integral manifold of the equation
(1) is determined by

F(t,ω)η = x(τ,τ,η,ω).

3. EXPONENTIAL SPLITTING AND REDUCTION PRINCIPLE

Now consider the problem of exponential splitting. Let P, Q be projectors E* on *
1E ,

*
2E  respectively. Suppose that P, Q commutate with the operator A . Denoting BA H =

1
,
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CA H =
2

we write the equation (1) in the form

. 0))((
~

, 0))((~

=+ω+




 +

=+ω+




 +

yxtAQyC
dt
d

yxtAPxB
dt
d

(2)

where AtAtA −= )()(~ .
It is not difficult to see, that the differentiable function Φ(t,ω), defining the linear

integral manifold of the system (2) bounded on the whole real axis is solution of the
equation

0)))((~())((~
=Φ+ω+Φ−Φ+ω+Φ+Φ ItAPBItAQC

dt
d . (3)

By the formula y = Φ(t,ω)x + η we transform system (2) to the form

. 0)(~)()(~

, 0)),()((~

=ηωΦ+ω+η+η

=η+ωΦ+ω++

tAPttAQC
dt
d

xtxtAPBx
dt
dx

(4)

The system (4) satisfies the conditions of Theorem 1 and has the m-codimensional linear
integral manifold.

By the formula x = ξ + F(t,ω)ξ we transform the system (4) to diagonal form

. 0))(~)()(~(

, 0))()((~

=ηωΦ+ω+η+η

=ξΦ+ξω+ξ+ξ

tAPttAQC
dt
d

ttAPB
dt
d

The transformation (x,y)→(ξ,η) realizes the exponential splitting of the equation (2).
Simple analysis implies that the condition 6 in Theorem 1 can be exchanged by condition
on boundedness specter of the operator 

1HAB =  from a specter of the operator

2HAC = . This makes possible to generalize Theorem 5.2 [5, p. 266].

Theorem 3. Assume conditions 1 - 5 by Theorem 1. Assume also that the averaging
equation 0=uL  admits the exponential splitting. Then there exist ω0 such that for any
ω > ω0 the equation (1) also admits the exponential splitting.

Theorem 3 and Theorem 3 [4] imply the following Theorem.

Theorem 4 (Reduction principle). Assume the conditions of Theorem 1. Then there
exists ω' such that for any ω > ω' a trivial solution of the equation (1) is stable,
asymptotically stable if and only if the trivial solution of this equation on the m-
dimensional linear integral manifold σm(ω) is stable, asymptotically stable, respectively.
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4. ASYMPTOTIC EXPANSION OF FINITE-DIMENSIONAL LINEAR INTEGRAL MANIFOLD.

As a rule we cannot construct effectively the function Φ (t,ω) defining the integral
manifold σm(ω). Therefore it is important, especially while the investigating the stability
problem for the equation (1), to construct the approximate linear integral manifold,
corresponding to σm(ω) [7]. We can construct the approximate finitedimensional linear
integral manifold of the equation (1) while considering the equation (3) and using the
following theorem.

Theorem 5. Assume the conditions by Theorem 1, Assume also that the function
P(t,ω)∈ C(Hom(E1,E2)) such that P(t,ω)→0, ω→∞ in the sense of norm of space
C(Hom(E1,E2)) exists and satisfies the equation

, ),()))((~())((~
ωω∆=+ω+−+ω++Φ tPItAPBPPItAQCP

dt
d (5)

where ∆(tω,ω) is a continuous function with respect to t with values in Hom(E1,H2)
Moreover the inequality

||∆(t,ω)||Hom(E,H2) ≤ kω-p ,   k > 0

holds for all ω > ω' and for some natural p.
Then if the function Φ(t,ω) defines the m-dimensional linear integral manifold of the

equation (1), then there exist the constants k > 0, ω" such that for ω > ω" the inequality

||Φ(t,ω) - P(t,ω)|| ≤ kω-p

holds.
Corollary. If A(t) is the almost-periodic function with respect to t, then there exists a

polynomial P(τ,ω) with respect to ω-1 of order p with the almost-periodic coefficients, the
function ∆(t,ω) satisfying the condition (6) such that P(tω,ω) satisfies the equation (5).

Remark. These results are considered in details in [8].

5. EXAMPLE

Consider a problem
π<<>+ω+= xtuuxgtau xxt 0   , 0   , ))()cos(1(  , (6)

0),(   , 0),0( =π= tutu ,
where a is constant,





π≤<π
π≤≤

=>>ω<
.2/   1,
;20   ,0

)(   , 1   , 1||
x

/x
xga

Here H = L2[0,π]. The averaged problem is
π<<>+= xtuuu xxt 0   , 0   ,  ,

0),(   , 0),0( =π= tutu .

According to the designations of Theorem 1
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,...}2,1   , 1{)(   , 2 =−=σ−−= nnAuuuA xx ,

}0sin)(:{   , }Span{sin
0

21 =ϕϕ== ∫
π

xdxxHxH .

The integral manifold of the parabolic problem (6) can be represented in the form

∑
∞

=
+=

2
.sinsin)(

k
k kxsfxsxu , (7)

A flow on the integral manifold (7) is described by the equation

.sinsinsinsin))()cos(1(

sin)(sin

22

2

2

∑∑

∑
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=

∞

=
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++
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
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



−−ω+=

=++

k
k

k
k

k
kk

kxsfxskxskfxsxgta

kxsfsfxs

After multiplying by sin x and integrating we have

.
12

1
12

1)1(
2
1)2(

2
1)cos(

2
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2 s

nn
nftas

k

n
n 
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


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−
−−−ω= ∑
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=

After multiplying by sin 2nx and integrating we have
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+
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∑

∑

=
+
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∞

=

n

k
k
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n
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k

n
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After multiplying by sin (2n + 1)x and integrating we have

.)1(
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2
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∑
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The integral manifold is defined in the first approximation as a periodic solution of the
system

14
2)1)(cos())2(1( 22

2
2

−
−ω+−=

n
ntafnf n

nn ,
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12
2

12 ))12(1( ++ +−= nn fnf .
We find from here

. 0

, sin
12

1
12

1)1(
)1)2((

cos
12

1
12

1)1(
2
1

)1)2((
1)2(

12

1
222

1
22

2

2

=




ω







+
+

−
−

ω+−
ω+




ω


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


+
+

−
−

−
−=

+

+

+

n

n
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n

f

t
nnn

t
nnn
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Upon substituting the obtained values in the equation on the manifold and analysing we
came to the conclusion on the unstability of trivial solution of the problem (6) for the
sufficiently large ω.
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EKSPONENCIJALNO DELJENJE
LINEARNE PARABOLIČNE JEDNAČINE

E. P. Belan, O. B. Lykova

Razmatra se linearna parabolična jednačina sa brzo promenljivim koeficijentima. Rešen je
problem konstruisanja transformacije kojom se realizuje deljenje početne jednačine. Ustanovljena
je značajna uloga integralnih mnogostrukosti u rešavanju ovog problema.


