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Abstract. The main result of this paper is to propose a new approach to study the exact
controllability for linear distributed systems with unbounded input operators. Under
appropriate assumption, we give the control which allows to reach a desired given
state, the problem of minimum energy control is also examined.

1. INTRODUCTION

The control processes for many dynamical systems are often severely limited. For
example there may be delays in the control actuators. Also for systems described by
partial differential equations it is not always possible to influence the state of the system
at each point of the spacial domain. Instead control is restricted to a few points or part of
boundaries. Modelling such limitations results in unbounded input operators. To study
the exact controllability with unbounded input operators we use a new technique
developped recently by J. L. Lions [4]; A. El Jai and A. Belfekih [3]. Finally we give an
illustrative example.

2. PROBLEM STATEMENT

We consider the system
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(2.1)

Where A is the infinitesimal generator of strongly continuous semigroup S(t) on a Hilbert
space X, u ∈  L2(0, T;U), the operator B is unbounded and B ∈  L(U,V) where U, V are
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Hilbert spaces such that X ⊂  V with continuous dense injection, moreover S(t) is a
strongly continuous semigroup on V. We assume that there it exists a constant b > 0 such
that
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We interpret equation (2.1) in the mild form which means that
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(2.3)

Remarks 2.1.
- In the following we identify the Hilbert X, U with their duals, then by duality we

have V* ⊂  X with continuous dense embeding, moreover S*(t) is a strougly continuous
semigroup on V*

- The dual statement of (2.2.) is (see (5), (6))
*

);,0(
**    , ||||||.)(|| 2 VxxbxTSB XUTL ∈∀≤− (2.4)

- If (2.2.) is satisfied, then for any x ∈  X we will use the expression B*S*(T − t)x,
0 ≤ t ≤ T; to denote the function in L2(0, T;U) which is obtained by continuous extention
of the operator:
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We consider the following problem of exact controllability.
Is it possible to find a control u* ∈  L2(0,T;U) steering the system (2.1) to a desired

state xd? ie such that

dxuxTx =),,( *
0 (2.5)

}),,(||:min{|||||| 0
*

dxvxTxvu == (2.6)

where x(T,x0,v) is the solution of (2.3) corresponding to the control v.

Definition 2.1.
 (i) the system (2.1) is said to be exactly controllable on (0,T), if for every x0, xd ∈  X,

u ∈  L2(0,T;U) such that x(T, x0, u) = xd
(ii) the system (2.1) is said to be approximately controllable on (0,T), if for every

x0,xd ∈  X and ε > 0, there exists u ∈  L2(0,T;U) such that:

ε<− ||),,(|| 0 dxuxTx
Let H be the operator defined by
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It follows from (2.2) that H is bounded and

);,0(2|||||||| UTLX ubHu ≤ .

Propostition 2.1.
The system (2.1) is approximately controllable on [0,T] if and only if Ker H* = {0}.
It is easy to establish that

****    , .)( VhhTSBhH ∈∀−=

moreover by remark (2.1), H* has and unique extention on X, we note it by

XxxTSBxH ∈∀−=    , .)(*** .

3. RESOLUTION OF THE PROBLEM

Consider the operator ∧  defined by

∫ −−→

→∧
T

xdrrTSBBrTSx

XX

0

** )()(          
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(3.1)

it follows from (2.2) and the remark (2.1) that ∧  is a bounded operator on X.

Lemma 3.1.
∧  is a self-adjoint and positive operator

Proof
For every x, y ∈  V* we have

);,0(
****

, 2.)(  ,.)(, UTLXX yTSBxTSByx >−−=<>∧<

and by density
Xyxyxyx ∈∀>∧<=>∧< ,   , ,  ,

moreover 
0||||  , 2* ≥=>∧< xHxx .

Lemma 3.2.
If the system (2.1) is apropcimately controllable on [0,T] then ∧  is injectif.

Proof
∧ x = 0 implies that <∧ x,x> = 0 then ||H* x||2 = 0, and by the proposition (2.1) x = 0.
Let us define the inner product <<, >> on X  by
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the associated semi-norm is

);,0(
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Remarks 3.1.
-if the system (2.1) is approximately controllable then || . ||F is a norm on X
- by remark (2.1) we have: ||x||F ≤ b ||x||X , ∀ x ∈  X
If we denote F the completion of X for the norm || . ||F, we have the following result.

Lemma 3.3. [1]
If we identify X with its dual, such that F* ⊂  X ⊂  F then ∧  is an isomorphism from F

onto F*, moreover 1|||| ),( * =∧ FFL  and >>=<<∧ yxyx ,))((  for every x, y ∈  F.

Now we show the principle result of this paper.

Proposition 3.1.
If the system (1.1) is approximately controllable and xd − S(T)x0 ∈  F* then there exists

a unique control u*(.). Solution of the problem (2.5)−(2.6). u* is given by:

fHu **(.) = (3.2)

where f  is the unique solution of the equation

0)( xtSxf d −=∧ (3.3)

moreover FUTL fu |||||||| );,0(
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Proof
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and by (3.3), x(T,x0,u*) = xd
on the other hand let C be the set:

}),,(/);,0({ 0
2

dxuxTxUTLuC =∈=

C ≠ φ because u* ∈  C. For every u∈ C we have ∫ =−−
T

drruuBrTS
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Hence ,   0, );,0(
**

2 =>−< UTLuufH    so 0, ** >=−< uuu

and finally Cuuu ∈∀≤    , |||||||| *

moreover .|||||||||||| **
FffHu =≤

Proposition 3.2.
If we denote E = {x(T,x0,u)/u∈ L2(0,T;U)} the space of reachable states at time T, then
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E = S(T)x0 + F*.

Proof
If x ∈  S(T)x0 + F*, then there exists f  ∈  F such that ∧ f = x − S(T)x0

so ∫ ∈=−+=
T

EuxTxdrrBurTSxTSx
0

00 ),()()()(  where u(.) is the control defined by

u(.) = B*S*(T−.)f
Inversely, for x(T,x0,u) ∈  E we consider the linear form
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it is easy to see that    FfuLf ||||   |||||||| ≤ .
Then, by density of X in F, (3.4) is true for all f  in F, finally we deduce by Riesz theorem
that .)(),,( *

00 FxTSuxTx ∈−

Remark 3.2.
The resolution of the equation (3.3) is equivalent to minimize the functional.

>−<−>∧<= xxTSxxxxJ d ,)(,
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Example:
Let the controlled parabolic system be:
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where A is a self-adjoint operator on a real Hilbert space X, let λn, n ∈  |N, be the simple
eigenvalues of A with corresponding eigenvectors φn ∈  X, ||φn || = 1 and assume |λn |→+∞,
λn < λn-1 < λ1 . We have

nnn xAx φ>φ<λ= ∑
∞

1
 .  , (3.6)

with
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For any positive sequence α = (αn)n , αn > 0 we define the Hilbert space
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with the inner product

∑
∞

α>=<
1

, nnn yxyx

Remarks 3.3.
- Xβ ⊂  Xα with continuous dense injection if and only if the sequence (αn/βn)n is

bounded (thus X ⊂  Xα if α = (αn)n) is a bounded sequence)

1
*

−αα = XX  where nn )( 11 −− α=α

- we identify X with X1 = i 2 via the isometric isomorphism
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The operator B is defined by

∫ ><→
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T
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XUB

0
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     :

where bn ∈  U and U a Hilbert space. It is easy to see that B is bounded if and only if
∞<∑ 2|||| nb .

Let }0/|max{0 ≥λ∈= nNnN

Proposition 3.3. [5]
We assume the sequence β = (βn) is bounded, positive and V = Xβ

if ∑
∞
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1

2|||| nn b then B ∈  L(U,V)
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Remarks 3.4.

- the operator ),( ** UXLB β∈  is given by
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- if  XVxx nn ⊂∈= *     )(  then
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In order to characterise the approximate controllability of the system (3.5), we must
calculate H*x for x ∈  X. This is the object of the following results.

Lemma 3.4

If there exists ε ∈  ]0,2T[ such that ∞<∑ ε−λ 2)2( |||| n
T be n  and ∞<β∑ 2|||| nn b  then

for every x ∈  X

∑
∞

−λ=
1

.)(*
nn

T bxexH n  on [
2

,0[ ε .

Proof

- if XVx ⊂∈ *    it is obvious that
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On the other hand it is easy to see that for fixed p ∈  |N and N  > N0  we have
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where c is a positive constant.
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and finally by unicite of the limit, we deduce
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Remark 3.5
It follows from the lemma 3.4 and the lemma 3.5 that under the assumptions
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n bb  and bn ≠ 0, ∀ n ∈  |N then the system (3.5) is

approximately controllable on [0,T]
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*Ker Hx ∈  implies that
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Because of the analyticity we extend (3.13) for all t ≥ 0, that implies

, 0=nnbx ∀ n ∈  |N (see [2]), then xn =0, ∀ n.

Finally we deduce by the proposition (3.1) the following result.

Proposition 3.5
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desired state xd is given by
(.)lim(.)*

nuu =  in );,0(2 UTL (3.14)
where
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method to resolve (E), ie r = lim rn where rn is the solution in the finite dimensional space
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where >φ=<

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4. CONCLUSION

In this paper the exact controllability of distributed systems with unbounded control
action has been considered, the minimal norm control which allows to reach a desired
state and the space of reachable states are given. The result of this work can be applied to
treat the hyperbolic, herioditary and other systems.
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UPRAVLJIVOST RASPODELJENIH SISTEMA
SA NEOGRANIČENOM UPRAVLJAČKOM AKCIJOM

Jamila Karrakchou, Mostafa Rachik

Glavni rezultat ovog rada je predlaganje novog pristupa izučavanju tačne upravljivosti
linearnih raspodeljenih sistema sa neograničenim ulaznim operatorima. Pod odgovarajućim
pretpostavkama, predložili smo upravljanje koje dozvoljava dostizanje datog željenog stanja.
Takođe je ispitan i problem upravljanja minimalne energije.


