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Abstract. The critical instability load of pin-ended bars of open asymmetric thin-
walled cross-sections subjected to a slightly eccentric thrust is discussed in detail using
both linear and non-linear stability analyses.The critical instability load for this case is
associated with simultaneous bending and torsion, been always smaller than the
classical Euler buckling loads for flexural and torsional buckling. Comparisons of the
above instability load with the Euler buckling loads are presented for various bars
slenderness ratios in conjunction with various thickness of the cross-sections elements.
Then, important findings are obtained regarding the instability failure load. The
stability study is supplemented by a postbuckling analysis leading to the conclusion that
the margins of the postbuckling strength are rather limited. The proposed method is
applied in the case of bars with unequal-leg angle cross-section and illustrated by a
numerical example.

1. INTRODUCTION

The use of thin-walled elements from steel or other composite materials in structural
member cross-sections is steadily increased in our days. This is due to the fact that
structural members with such a cross-section may have a high load-carrying capacity
(compared to their self weight) combined with adequate stiffness. However, the
behaviour of these bars with asymmetric or singly-symmetric cross-sections, require
particular attention in their stability analysis. This topic has been the field of extensive
research within the framework of the linear classical analysis. Reviewing the present
state-of-the-art it is worthmentioning the classical book by Vlassov [13] as well as a large
amount of studies based on linear analyses [2, 11, 3, 12]. One should also mention
pertinent work concerning the lateral buckling and postbuckling behaviour of beams and
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beam-columns [10, 14, 6, 4]. Nevertheless, to the knowledge of the authors, there is a
lack of references in the area of postbuckling analyses of bars with asymmetric or singly
symmetric thin-walled open cross-sections under centrally or eccentrically applied thrust.
A rather complex formulation based on numerical simulation and non-linear kinematic
relations is presented by Chen and Atsuta [3]. In a rather recent publication [1] a
numerical solution based on a modified FEM scheme deals essentially with the
interaction of local, flexural and flexural-torsional modes of buckling for columns with
singly-symmetric thin-walled cross-sections. In a recent work [7] Kounadis presented a
comprenhesive analysis concerning bars with asymmetric thin-walled cross-sections
under simultaneous bending and torsion due to central thrust. This is based on a simple
postbuckling analysis, (regarding the formulation of the non-linear differential equations
and the associated solution), using an efficient and simple approximate technique for
solving non-linear initial and boundary-value problems [8] An application of the above
method, concerning the case of an equal-leg angle is, also, recently presented [5].

2. BASIC EQUATIONS

Consider the case of a bar with arbitrary constant thin-walled cross-section of length
  having pinned supports at both ends, and subjected at one of its ends to a compressive

eccentically applied load P. Instability of this bar with such a cross-section (in which the
centroid G does not coincide with the shear center S), occurs through a combination of
bending and torsion in case in which there is no axis of symmetrie of the cross-section. It
is assumed that the bar, after buckling, can be in equilibrium in a slightly deformed
configuration consisting of a translation and a rotation of the cross-section.

Let G the origin of a cartesian coordinates system, x and y the principal centroidal
axes of the cross-section, and x0, y0 the coordinates of the shear center S. The
aforementioned translation is defined by the deflections u (along the x axis) and υ (along
the y axis) of the shear center S as well as the centroid G. The new positions of G and S
are denoted by G΄ and S΄ respectively (Fig. 1). The rotation of the cross-section about this
new position S' of the shear center is denoted by ϕ and the final position of the centroid
by G".The coordinates of G" with respect to the initial centroidal axes x and y are u + yoϕ
and υ − x0ϕ, respectively.The axial thrust P is applied at a point A of the cross-section
determined by the small eccentricities ex and ey (Fig. 1). The deflections corresponding to
the above point A in the x and y directions are u − ex + (y0 − ey)ϕ and υ − ey + (x0 − ex)ϕ
hence the external moments, along the longitudinal axis z of the bar, due to the axial
thurst P, are:
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Fig. 1. Displacements of the shear center and the centroid of the cross-section

Equating the above external moments, given by eqs. (2) with the corresponding
internal moments -EIxυ", -EIyu" at an arbitrary point of the z-axis yield the following
differential equations governing the displacements of the shear center axis
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where EIy , EIx are the bending rigidities with respect to the principal centroidal axes x
and y of the cross-section.

The third differential equation will be established by employing the condition of
equality of the external torque Mt ex (for nonuniform torsion) with the internal torque

3

3
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where GJ and ECω are the torsional rigidity and the warping rigitity of the cross-section
respectively. Taking into account that the effect of P on the bending stress at the initial
postbuckling equilibrium path due to small eccentricities can be neglected compared to
the total normal stress, the resulting differential equation is [11]

uPyPxP
A
IGJ--EC o ′′−υ=ϕ










ϕ ∗∗

∗

ω 00 """" (6)

where
AyxIIIeaeaAII yxxy )(     , )ˆˆ( 2

0
2
002100 +++=++=∗ (7)

with



868 G.I. IOANNIDIS, J.H.ERMOPOULOS, A.N. KOUNADIS










−


 ∫+∫=

−


 ∫+∫=

0
23

2

0
23

1

21ˆ

21ˆ

xdAxydAx
I

a

ydAyxdAy
I

a

AAy

AAx (8)

in which A is the cross-sectional area. Equations (4) and (6) govern the elastic instability
of the bar for which Euler classical buckling is no longer valid since in such a case of bar
with asymmetric cross-section instability occurs through a combination of bending and
torsion. For the above pinned supports with simple rotationally restraint ends (both are
free to warp and to rotate about the x and y axes but cannot deflect in the x and y
directions and rotate about the z axis) the boundary conditions are
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The integration of the system of the above differential eqs (4) and (6), subjected to
the boundary conditions (9) in the case ex= ey= 0, is presented in detail in ref [11]. The
procedure employed is based on the Galerkin technique using the shape functions

zzzuu ∂ϕ=ϕ∂υ=υ∂= sin   , sin   , sin 000 . (10)

The system of the above equations along the boundary conditions (9) and usage of the
shape functions (10) leads, to an homogeneous system with respect to u0, υ0, ϕ0 whose
determinant, for a non trivial solution, must be zero. However, in the examined case, the
presence of the terms Pex and Pey in eqs (4) leads to a non homogeneous system. An
exact solution, if it is possible to be obtained, consists of two parts: the complementary
solution and the particular one. In such a solution the evaluation of the integration
constants, quite cumbersome, could be obtained only numerically [9]. Approximate
solutions have been also reported [3]. In the present work, focusing attention on the initial
postbuckling path, we can adopt the approximation presented in ref [11], regarding the
smallness of the initial deflections due to Pex and Pey (assosiated with small eccentricities
ex and ey). Thus, one can neglect ex compared to u and ey compared to υ. In this case the
results associated with the central thrust, presented in ref [7] are also valid for the
eccentrically applied load if x0 and y0 are replaced by ∗

0x and ∗
0y  respectively, The

corresponding critical load, producing instability according to a combined flexural and
torsional mode, can be obtained as the smallest root of the following cubic equation
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denote the flexural buckling (critical) loads about the x and y axes and the torsional
buckling (critical) load respectively and

yxc III += (13)

3. POSTBUCKLING ANALYSIS

 In this section, attention is focused on the discussion of the bar response in the
vicinity of the critical (bifurcational) state. This will allow to establish the stability or
instability of the critical state [6, 4, 5]. To this end we adopt the more accurate
relationship between bending moment and curvature [6] due to which
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Subsequently, for the sake of notation simplification, only the case of the centrally
applied thrust will be considered although the pertinent analysis holds also for a slightly
eccentric thrust under the above assumptions. Using relations (14), eqs (4), become
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where
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Following the approximate analytic technique developed by Kounadis [8] for solving
nonlinear boundary-value problems, we introduce into the Right Hand Side of eqs (15)
the expressions for ϕ, u and v given in eqs (10). Then, it follows that
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Given that
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the general integrals of eqs (17) are given by
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Due to the boundary conditions (9), 0)1()0()1()0( =υ=υ== uu  which yield

C1 = C2 = D1 = D2 = 0 , (21)
eqs (20) become
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Integration of eq.(6), taking into account that the integration constants due to the
conditions (9) is zero, yields
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Introducing into the second member of eq. (23) the expressions of )(ξu  and )(ξv
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Following the previous procedure and taking into account that the homogeneous part
of eq. (25), due to ϕ(0) = ϕ(1) = 0, is zero, it follows that
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Applying eqs (22) and (27) for î = 0.5, we obtain the following system of non-linear
equilibrium equations
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where Ai (i = 1, 2, 3, 4) are given in eqs (26).
Introducing the notation

υ−µβ=βρ=βρ= 222222    ,    , tyyxx kkk , (29)
where
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one can establish the initial postbuckling path for given values of the above parameters
ρx, ñy, μ ,ν depended on the geometrical characteristics of the cross-section and the
material properties. This is achieved by solving numerically the system of eqs (28) with
respect to 000  , , ϕυu  for various values of the external (dimensionless) load 2â .

Clearly, the trivial solution 0000 =ϕ=υ=u , which defines the fundamental
equilibrium path, satisfies eqs (28). The intersection of this path with the nonlinear
postbuckling path associated with eqs (28) corresponds to the critical bifurcational state.

4. APPLICATION TO AN UNEQUAL-LEG ANGLE CROSS-SECTION

(α) Linear analysis

The analysis presented above will be applied to the case of a pin-ended bar, with
length  and an unequal-leg angle cross-section of uniform thickness t, subjected to an
eccentrically applied load P (Fig. 2). Let x, y, the principal axes of the cross-section, ξ
and n the geometric axes (forming an angle ω with the principal axes), b1 and b2 the
lengths of the legs (b1< b2 ) and x0, y0 the coordinates of the shear center S. Assuming
t << b1 and introducing the dimensionless quantities
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Fig. 2. Unequal-leg angle cross-section. Geometrical data.

Using eqs (35), (36) and (37) the dimensionless quantities introduced by eqs (30) can
be written as follows
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When ex, ey ≠ 0, I0 in the second of eqs(35) should be replaced by ∗
0I , (eqs (7), (8))

and the quantity μ in eqs(38) should be determined as 2
0 / ÁÉì ∗= . The integrals of

eqs. (8) can be calculated as functions of the geometric characteristics of the cross-
section. For example
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eq(11) can be written in dimensionless form as follows
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and therefore
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From equation (43) one can determine the critical instability load associated with
simultaneous bending and torsion.

In Fig. 3 the variation of the dimensionless critical load β2 = P  4/ECω versus
/11 bb =  is presented for the specific case 0== yx ee  in two plots for f = 0.3846, various

values of 2b  and t = 0.05, 0.10. In Fig. 4 one can see the variation of the dimensionless
loads  yP and  tP against 1b  for two values of the dimensionless thickness t  and three

values of 2b .
From the above plots it is worthobserving the following:
(a) the critical instability load P (associated with simultaneous bending and torsion),

is until 1.6 times smaller than the smaller of Py and Pt

(b) for thick cross-sections )20.0( =t  and for slender bars ( 02.01 <b ) the critical load
of flexural-torsional buckling practically coincide with the critical (Euler) buckling load

(c) for thick cross-sections )20.0( =t  and bars with small slenderness ratio, P
practically coincides with the critical load of torsional buckling for 08.01 >b  (when

00.22 =b ), for 11.01 >b  (when 50.12 =b ), and for 15.01 >b  (when 00.12 =b ).
(d) for thin cross-sections )05.0( =t  the above coincidence is observed when

05.01 >b (for 5.12 ≥b ) and when 08.01 >b  (for 00.12 =b ).
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Fig. 3. Variation of the dimensionless instability load β2 vs 1b  for a bar
with an unequal leg angle cross-section and various values of 2b  and t .

Fig. 4. Variation of 1P  and tP  against 1b  for a bar with an unequal leg angle
cross-section and various values of 2b  and t .

Fig. 5. Postbuckling equilibrium path for a bar with unequal-leg angle
cross-section under centrally applied axial thtrust.

(b) Non linear analysis

The system of non-linear equilibrium equations for bars with asymmetric cross-
sections, is associated with eqs(28).In the above system, for the specific case of a bar
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with an unequal-leg angle cross-section the dimensionless critical loads 222 ,, tyx kkk  are
calculated from eqs (29) using the auxiliary quantities ρx, ρy, µ, υ obtained by eqs (38),
(39). The dimensionless coordinates of the shear center 0x and 0y  are, also, introduced
as expressions of 21  , bb , t , using eqs (33), (34). Then, for given values of 21  , bb , t  the
postbuckling path (β2 vs 0u ) or (β2 vs 0υ ) or (β2 vs ϕ0) can be established by determining

0u , 0v  and 0ϕ  for several values of the postbuckling load.
Figure 5, shows an example of a postbuckling equilibrium path (β2 vs 0υ ) for the

case of a bar with an unequal-leg angle cross-section having the following geometric
characteristics: ,0.2 ,05.0 21 == bb 05.0=t . The corresponding dimensionless critical load
is β2

cr= 225564.
In view of the above numerical results and the established postbuckling equilibrium

paths, one can conclude that the critical bifurcation state is related to a stable and
symmetric branching point. Thus, the bar develops postbuckling strength and it is not
sensitive to initial imperfections. Nevertheless the postbuckling paths are rather shallow
and therefore the margin of the above postbuckling strength is limited.

CONCLUSIONS

The most important conclusions of the present study are the following:
(a) A simple and efficient technique for establishing the initial part of the

postbuckling equilibrium path is presented, for the case of axially compressed bars
with asymmetric open thin-walled cross-sections.

(b) The critical instability state, corresponding to bars with unequal-leg angle cross-
section, is related to a stable and symmetric bifurcation point.

(c) The postbuckling paths, corresponding to the above case, are very shallow and
therefore the postbuckling strength is limited.

(d) For bars with unequal-leg angle cross-section, the critical instability load
(associated with simultaneous bending and torsion) is until 1.6 times smaller than
the smaller of the critical (Euler) loads corresponding to pure flexural and
torsional buckling.

(e) Areas of the geometrical data of the above bars for which the critical instability
load practically coincides with the critical loads of pure flexural or pure torsional
buckling, are indicated.
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ANALIZA STABILNOSTI ŠTAPOVA
SA ASIMETRIČNO OTVORENIM TANKOZIDNIM PRESECIMA

POD EKSCENTRIČNIM AKSIJALNIM PRITISKOM
G.I. Ioannidis, J.H. Ermopoulos, A.N. Kounadis

Opterećenje kritične nestabilnosti za zglobno oslonjene štapove otvorenih asimetričnih
tankozidnih poprečnih preseka izloženih blago ekscentričnom pritisku je detaljno razmatrano
korišćenjem i linerane i nelinearne analize stabilnosti. Opterećenje kritične nestabilnosti za ovaj
slučaj povezano sa istovremenim (simultanim) savijanjem i uvijanjem, je uvek bilo manje od
klasičnih Euler-ovih opterećenja izvijanja za savojno i torziono izvijanje. Poređenja prethodnog
opterećenja nestabilnosti sa Euler-ovim opterećenjima izvijanja su prikazana za različite vitkosti
štapova u sprezi sa različitom debljinom elemenata poprečnog preseka. Važna otkrića su dobijena
s obzirom na opterećenje kritične nestabilnosti. Studija stabilnosti je dopunjena analizom posle
izvijanja koja vodi do zaključka da su rezerve čvrstoće posle izvijanja prilično ograničene.
Predložena metoda je primenjena na slučaj raznokrakih ugaonih (ili L) poprečnih preseka i
ilustrovana je numeričkim primerom.


