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Abstract. This paper studies ionized gas flow in the case of a concrete form of the law
of its electroconductivity change. The corresponding boundary layer equations are first
by means of suitable transformations brought to a universal form. Then the equations
are numerically solved in three-parametric approximation. Physical values and some
boundary layer characteristics are graphically presented.

1. INTRODUCTORY STUDIES, STARTING EQUATIONS

This paper studies ionized gas flow in the boundary layer on the body of arbitrary
shape. The study represents the sequence of our previous analysis of this extremely
complex case of the fluid flow. Ionized gas, that is plasma, is essentially different from
the three known aggregate states; therefore it is usually called the fourth aggregate state.

One of the main features of ionized gas is its electroconductivity. As a matter of fact,
due to ionization, and under the influence of the outer magnetic field, an electric stream
appears in the gas. The electric stream causes the appearance of Lorentz's force and
Joule's heat. Because of these two effects new members appear in the corresponding
boundary layer equations, which is not the case in the equations of homogeneous gas
which is not ionized. Therefore, in the case of ionized gas flow, equations of laminar,
steady and plane boundary layer [1], [2], in the conditions of so-called equilibrium
ionization, have the following form:

                                                          
  Received July 10, 1998; in revised form August 16, 1999



954 B.R. OBROVIĆ,  Z.B. BORIČIĆ,  S.R. SAVIĆ

)for         )(     , )((
, for       )(     , )(

, 0for                    0

;
Pr

,

,0)()(

000

22
2

2

xxyhhyuu
yxhhxuu
yhhvu

uB
y
h

yy
u

dx
dpu

y
hv

x
hu

uB
y
u

ydx
dp

y
uv

x
uu

v
y

u
x

ee

w

m

m

===
∞→→→

====

σ+





∂
∂µ

∂
∂+





∂
∂µ+=

∂
∂ρ+

∂
∂ρ

σ−





∂
∂µ

∂
∂+−=

∂
∂ρ+

∂
∂ρ

=ρ
∂
∂+ρ

∂
∂

(1)

In these equations as well as in the corresponding boundary conditions, the symbols   

common  in  the boundary layer  theory are  used for certain  physical  values. So, 22uBmσ
represents Joule's heat. It is considered, as usually [1], that the outer magnetic field is
perpendicular to the contour of the body, and that because of a relatively small thickness
of the boundary layer the equation of this field is )(xBB mm = .

In our earlier studies it was presumed that the electroconductivity of ionized gas could
also be presented in a form of a function only of longitudinal coordinate x, i.e. σ = σ(x).
However, some of the characteristics and parametric solutions of the ionized gas
boundary layer equations, obtained according to this form of electroconductivity law [3],
show that, among other things, it is necessary to have a concrete form of this law.
Therefore, in this paper and in this phase of our studies, it is considered that the law of
electroconductivity change is determined by the expression [4, 6]:
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According to the form of the law (2), it is concluded that electroconductivity
disappears at the outer boundary of the boundary layer, i.e. σ = σe = 0 at this boundary.

If, by the known procedure, we exclude the pressure from the equation system (1)
then the system can take the following form:
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with the unchanged boundary conditions. Here, the index ″e″ presents physical values at
the edge of the boundary layer.
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2. INTRODUCTION OF NEW VARIABLES

Modern parametric methods of solution of boundary layer equations are based, as it is
known, on the application of an impulse equation. In order for an impulse equation to
have the simplest form we introduce, as with similar flow problems [2], new variables  s,
z  and the stream function ψ in the form of:
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where the index ″w″ represents conditions at the wall of the body rounded with fluid,
while ρ0, µ0 = ρ0ν0 represent the known constant values of density and dynamic viscosity
of ionized gas.

By means of newly introduced transformations (3) the starting equation system (1')
comes down to:
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In the equation system (4) the non-dimensional function Q and Prandtl's number Pr
are determined by the following expressions:
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By means of the variables (3) and by the known procedure it is relatively easy to
obtain the impulse equation based on the two equations of the system (1'). This impulse
equation can be written in its three form as:
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where the apostrophe represents the derivative per the longitudinal variable  s.
While obtaining the impulse equation we take into consideration the parameter f, the

magnetic parameter  g, the conditional thickness  
∗∗∆1  as well as the other common values
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and characteristics of the boundary layer, which are:
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The tangential stress at the wall of the body rounded with fluid, in this case of flow, is
determined by the non-dimensional function of friction ζ as:
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Using the ideas from [2] we apply another transformation of variables to the equation
system (4):
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where ),( zsΦ  and ),( ηsh  stand for the conditional stream function and the non-
dimensional enthalpy.

The previously introduced relations and characteristics (7) can be, by means of the
newly introduced transformations (8), written as:
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where it is presumed that the values A, A1 and B are continuous functions of the
coordinate s.

The equation system (4), after a complex derivation and by means of the
transformations (8), comes down to:
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It is pointed out that the obtained equation system (10) is different from the
corresponding equations [3], in the case when σ = σ(x), only in sign and in the form of
the last member on the left handside of the sign of equality of the both equations
(underlined members).

Further on, the local parameter of compressibility κ = f0 and constants  a, b  exist in
the equation systems (10) and in the corresponding boundary conditions. The parameter
of compressibility satisfies the simple differential equation:
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3. GENERALIZATION OF BOUNDARY LAYER EQUATIONS
OF THE CONSIDERED PROBLEM AND THEIR SOLUTIONS

It is also noticed that, besides the parameters and their distributions: κ, f, g, Pr, Q,
ρe/ρ, the outer velocity ue(s) clearly exists in the obtained equation system (10).
Therefore the solution of the system depends on each concrete form of distribution of this
velocity. In order to avoid the noticed disadvantage instead of the transformations (8) we
apply the similarity transformations in the following form:
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With the new transformations (12), the function Φ and the non-dimensional enthalpy
h  are not directly dependent on the longitudinal variable  s  but indirectly by means of
the parameters κ, f  and  g.

By means of the relations (12) the basic equation system (4) is transformed into this
form:
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As it is seen not even these equations can satisfy the conditions of generalized
similarity because the members ueZ**f ' and ueZ**g' contain )(sue  on their right hand sides
and cannot be expressed by means of κ, f,  g and Fm. Therefore in further researches, new
parameters are introduced. As a matter of fact, the parameters  f  and  g, used so far, were
considered to be the first in order f = f1 and g = g1, while the introduced parameters f2 and
g2 are the second order and they contain higher derivatives of the outer velocity  ue and of
the function Nσ. So, we have applied similarity transformations in this form:
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It has been shown that, in this case as well, the obtained equations contain new factors
among which there are the outer velocity and its derivatives. Further detailed analysis has
determined that also in this case of ionized gas flow it is necessary to introduce two sets
of parameters in the following form:
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These parameters satisfy the next known recurring simple differential equations:

)...,3,2,1(                  
])1([

,])1([

11

 11

=
≡++−=′

θ≡++−=′

+
∗∗

+
∗∗

k
GggFkfkgZu

ffFkfkfZu

kkkmke

kkkmke

. (15)

If at the very beginning of the similarity transformations (12) we introduce the two
sets of parameters (fk), (gk); i.e. if we apply the transformations to the system (4):
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then the system takes this form:
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The characteristic function Fm in this case is:
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Since the distribution of outer velocity ue(s) exists neither in the equation system (17)
nor in the corresponding boundary conditions, the system (17) is in that sense universal,
i.e. generalized.

The solution of this equation system is practically possible only when there is
relatively small number of parameters. Therefore, as with similar flow problems [2], the
solution is obtained by so called n - parametric approximation. If it is presumed that all
the parameters equal zero, starting from the second one, and if the derivatives per the
compressibility parameter and per magnetic parameter are neglected, which means that:
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the system (17) becomes much simpler. In the so-called three-parametric twice
localized approximation the equation system (17) comes down to:
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Under the conditions (19) the expression for the characteristic function Fm is much
simplified. In three-parametric unlocalized and twice localized approximation this
function is determined by the expressions:
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where the correct expression for the function Fm is determined by the relation (18),
that is (7).

Numerical solution of the equation system (20) is performed by the method of finite
differences, by the ″progonka″ procedure, where the order of the equation system was
first reduced by the usual shift u/ue = ∂Φ/∂η = ϕ. For the correct solution of the system, a
program has been written in the Fortran program. A similar program developed and
applied in [5] was used while writing it.

While solving the obtained equation system (20), for the non-dimensional function Q
and for the relation of the densities ρ/ρe , the following approximate formulas have been
used:
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where the value of Prandtl's number,  Pr = 0,712.
These formulas represent relatively rough approximation in the case of ionized gas

flow. For the constants a, b, the usual values in the boundary layer theory have been
accepted (a = 0,4408 ,  b = 5,7140).

Out of many obtained numerical results only some of them are shown in this paper, in
a form of the corresponding diagrams. Diagrams of non-dimensional velocity (Fig. 1,
Fig. 2, Fig. 3), non-dimensional enthalpy (Fig. 4, Fig. 5) and of some characteristics of
boundary layer (Fig. 6, Fig. 7, Fig. 8) are given here.

First of all, it should be pointed out that, as with other problems of ionized (or
dissociated) gas flow, the obtained solutions are expected, logical and acceptable.

As it is seen in the presented diagrams (Fig. 1, Fig. 2, Fig. 3), non-dimensional
velocity, for different values of compressibility parameter, convergates fastly towards
zero. The graphics non-dimensional enthalpy (Fig. 4, Fig. 5) are logical, but it is also
pointed out that the compressibility parameter has a considerable influence on the
distribution of enthalpy in the boundary conditions thus defining its value at the outer
boundary.
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Fig. 1. Graphic of  the non-dimensional Fig. 2. Graphic of the non-dimensional
velocity velocity

Fig. 3. Graphic of the non-dimensional Fig. 4. Distribution of the non-dimensional
velocity for different values enthalpy
of the parameter f0

The behaviour of the boundary layer characteristics (Fig. 6, Fig. 7, Fig. 8) is also
expected. However, for some values of the input parameter, an unexpected behaviour of
the characteristic Fm (7, 21) in the boundary layer has been noticed even besides making
a concrete form of the law of electroconductivity (2).

Further studies should, among other things, give a precise answer to this behaviour of
the function mentioned. That's why while solving the obtained equation system (20), as
with [5], the correct expression (7) has been used for the characteristic function of the
boundary layer Fm.
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Fig. 5. Distribution of the non-dimensional Fig. 6. The characteristic
enthalpy for different values of the boundary layer B
of the parameter f0

 
Fig. 7. The characteristic Fig. 8. The non-dimensional function

of the boundary layer Fm of the friction ζ
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GRANIČNI SLOJ JONIZOVANOG GASA ZA SLUČAJ
PROMENLJIVE ELEKTROPROVODNOSTI

Branko R. Obrović,  Zoran B. Boričić,   Slobodan R. Savić

U radu se istražuje strujanje jonizovanog gasa za slučaj konkretnog oblika zakona promene
njegove elektroprovodnosti. Odgovarajuće jednačine graničnog sloja su prvo pogodnim
transformacijama dovedene na univerzalni oblik. Zatim su jednačine numerički rešene u
troparametarskom približenju. Grafički je prikazano ponašanje fizičkih veličina i nekih
karakteristika  graničnog sloja.


