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PARAMETRIC METHOD IN THE THEORY
OF NON-STATIONARY AXISYMMETRICAL
MHD BOUNDARY LAYER ON A ROTARY BODY
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Zoran B. Borici¢, Dragisa D. Nikodijevi¢, Dragica R. Milenkovi¢

Faculty of Mechanical Engineering, Beogradska 14, 18 000 Nis, Yugoslavia

Abstract. The paper discusses axisymmetrical non-stationary MHD boundary layer on
a rotary body. Firstly, the Mangler-Stepan transformations are enlarged, it has been
shown that equations of the axisymmetrical problems are reduced to equations of the
respective plane problem. Then, with the use of the parametric method, the universal
equation which turns out to be identical to the universal equation of the respective
plane problem or plane analogy, is obtained. It has practically been shown that the
solutions for plane non-stationary MHD boundary layer can be used for solving
axisymmetrical problems of non-stationary MHD boundary layer on a rotary body.

The parametric method [1, 2, 3] has given satisfactory results in the theory of the
plane boundary layer, namely, both of the stationary and the non-stationary one [4, 5,
6]. This paper presents an attempt to form a parametric method for non-stationary
axisymmetrical problems of boundary layer MHD on rotary bodies. The discussion will
be focused on the boundary layer formed at the longitudinal rotary body flow in the
presence of a homogenous external magnetic field perpendicular to the body. This is in
fact a boundary layer that is formed at non-plane two-dimensional motions of a viscous
fluid. The fluid is incompressible while its electric conductivity is invariable. The
problem is discussed in inductionless approximation, that is, for small values of the
magnetic Reynolds number. Thus, the hydrodynamic problem can be separated from the
electrodynamic one.

The mathematical model of the described problem is represented by the equations
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as well as by the boundary and the initial conditions
u=0,v=0 for y=0; u - U(x,t) for y - o; )

u=u(x,y) for t=t,; u - uy(t,y) for x - x;.

The notations in equations (1) and in boundary and initial conditions (2) common for
the theory of MHD boundary layer are used, namely: ¢ - time, x, y - longitudinal and
transversal coordinate in the boundary layer, respectively, u, v - longitudinal and
transversal velocity in the boundary layer, respectively, U- velocity on the external limit
of the boundary layer, v, p, 0 - coefficient of kinematic viscosity, density and electric
conductivity of the fluid, respectively, B - magnetic induction, r- radius of the transversal
curve of the body surface, ;- distribution of the longitudinal velocity in the boundary
layer at the moment ¢ = ¢, u, - distribution of the longitudinal velocity in the section
x = x, of the boundary layer.

Mangler and Stepanov [7] have shown that the equations of the stationary
axisymmetrical boundary layer on a rotary body can be reduced, by an appropriate choice
of transformations - new variables, to equations corresponding to the stationary plane
boundary layer. In this way the process of solving of the stationary axisymmetrical
problems of the boundary layer on rotary bodies is reduced to solving equations of the
respective plane problem - analogy. In Ref. [8] these transformations are enlarged to
comprise equations of the problem of stationary axisymmetrical MHD boundary layer on
the rotary body. In this paper they will be further enlarged to non-stationary
axisymmetrical problems of boundary layer MHD on the rotary body, that is, to equations
(1) with boundary and initial conditions (2). For this purpose we are introducing the
transformations

2

P=l R T Ly, GETD ZuC0.
’ A3)
U(xt) U(x,t), v——@+lﬂyuﬂ N(x t)——N(xt)
with the use of the operator
9.0 9./ 0 ydrd 0_ra W
ot [*>0f ox [*O% deafz’ oy Lady
we transform equations (1) into equations
~ ~ ~ D~
a—ﬁ+ﬁa—3+va—”:a—U Ua—U+va——N(u—U)
ot ox dy ot ox v 5)
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while boundary and initial conditions (2) are transformed into conditions

u=0,v=0, for y=0; L7—>l7()7,7) for y - o ©)
u=u(x,1), for 1 =1%; U - uy(t,y) for X - X,.

where "~"

layer.

It can be noticed that equations (5) with boundary and initial conditions (6) are
identical with equations and boundary and initial conditions of the respective plane
problem - plane analogy.

In this way the solving of the axisymmetrical problem, that is, solving of equations
(1) with boundary and initial conditions (2) is reduced to solving the respective plane
problem, that is, to solving equations (5) with boundary and initial conditions (6). It
virtually means that the solution of the respective plane analogy can be used for solving
the axisymmetrical problem. Naturally, all this stands for the concrete velocity on the
external limit of the boundary layer, for the concrete magnetic field and for the radius of
the transversal curve of the body surface.

As a simple case of applying transformations (3) we will consider the axisymmetrical
fluid flow in the boundary layer for which

, as has been done so far, denotes respective values of plane MHD boundary

U(x,t) =Cixt, r(x)=Cyx, N(x,t)=Csxt . (7
In that case, transformations (3) have the form
2 2
~ C ~_C ~
t = 2x2t, x——2x3, =—Zy , U=u,
r s T
c orp” L.l c, 12 ®
62713 137 ;:_BH._yuH ﬁ:_fﬁ_z;—l?
3 2 sz O X O 3 C2
while the problem is reduced to solving the respective plane problem in which
UR1)=cx"*7, NX7)=Cc'%'7 )
where
¢ oL " c, 12
C=175 g , (=22 (10)
3 2 3 C2

The characteristic parameters of the boundary layer of the axisymmetrical problem
and of the respective plane problem are connected by the following relations:
- for tangential stress upon the wall

T
T,=—T, 11
w7 an
- for thickness of extrusion
=Ly (12)
r
- for thickness of the impulse loss
Fk L o %k
o =—0 . (13)
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Now some of the methods of the plane boundary layer theory can be applied to
solving this problem. Likewise, the paper might as well end here with the already-
presented conclusion.

Still, we will further see what the application of the generalized similarity method is
like - that is, the parametric method in the Lojcjansky version applied to these problems.
For this purpose we are taking into consideration flow function W(x,y,?) in the relations

10(¥) — 1o(W) _ _

, 14
r oy r o Ox (19

and thus the system of equations (1) is transformed into the equation

% aq-’al-l-’ E‘-l-’ '+'dr 2y aU Ua_U+van_N W U (15)
atay ay 0x0y Dax rdx 0ay” ot Ox 3’ Oy

while boundary and initial conditions (2) are transformed into conditions

w=0, a—qJ=O for y=0; a—qJ—>U(x,t) for y - o
oy oy
(16)

a—qJ=u](x,y) for t=¢,; %—w—»uo(t,y) for x - x;.
v

dy

While using further Lojcjansky's variables [2] as well as transformations (3) we are
introducing new variables

2 r r Wi, p,1)

~ N_Lx -n’ -pl_*&»H
F=gt, %= 2{ (x)dx, n= DLh( —, O(@.n,7)= LU(x,y)h(;,;) (17

| ~

in which D - standarizing constant, A(X,7)-linear size; thus, equation (15) is transformed
into equation

Y A qﬁ _¢EEJ_c7 NZ%_
on’ axH "H T

(18)
2
lnzﬂ 1o 9o __ 0% +02X(%;n) =0
2 0t an* 2 0 on? atar]
where the notations are introduced
2 2 2
2= Xy =22 00 00 00 (19)
v

Ox; OnNdx, Ox, ox,0n

The boundary conditions corresponding to equation (18) are obtained from conditions
(16) and are of the following form
$=0, @:O for nzo;%al forn - oo, (20)
on on

Further, using the ideas of Busmarin and Saraev, we are taking into consideration sets
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of parameters
k+nyy
fen=U" :Nkaijn 2K (ky,n=0,1,2,..kvn £ 0)
X0t
- ak—1+n]\7 (21)
% P 2 (k,n =012,k #0)
t
as well as constant parameter
p= g_ti = const. (22)
It can be noticed that the first parameters are of the forms
oU z U ~
Jio = Za_}’; Jou =§6_’ g0 =MNz. (23)

In further use of parameters as new independent variables instead of X and 7 as well
as differential operators:

6 _ hd afk,n a + hd agk,n a

0x 4=0 OX 0fy, /& OX 0g4,
kvn#z0 n=0 (24)
i i af‘kn a - agk,n a
or knOat afkn & or agk,n,
kvn#0 n=0
we are transforming equation (18) into the equation
00 [ 0’0, , o _[o 0% _
0?2 Hpy E;—+ H—% O (fy, + )E n—-~
an3 0 fl,OD aﬂz fl,oE N H f01 81,0 P an
(25)
S XM o)+ ALy~ B S DL X (1) B~
n r]; n + n D+ n r];g n + n |:|
;kc,;:o il ) A gy, 2B ol T ondg, g
vn#0 n=0
where, for the sake of brevity, the following notations are introduced
~ 0z
Ckn_Ckn+(k+n)kan’ _(k l)flofkn+fk+ln’ F= Ua_x
A = A ¥ R F D5 Ay = KD for i * S 26)

Dk,n = Dk,n + (k + n)ng,n ) Dk,n = (k _1)f1,0gk,n + k+1,n )
Bz,n = Bk,n + (k + n)pgk,n 5 Bk,n = (k - 1)f(),lgk,n + kn+l -

In order to make equation (25) universal, that is, explicitly independent of
characteristics of the external flow, it is necessary to show that function F also depends
only on the introduced parameters. For this purpose, let's start from the impulse equation
of the plane analogy of the observed problem, that is, from the impulse equation of non-
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stationary plane MHD boundary layer

0 ~xe 0 mozw SO0 | B T
—Ud)+—U"d Y+U +N -2 =0 27
o7 Vo) 5! ) EZTT % 0 @7)

3*:];@—%%1" J'KB , T, —pv%% O. (28)

Further on, by taking into consideration the parameters

_17H_
'DJE

o _1 _ T _p0%
h Ia ’ pvU ar]

where

(29)

and moving in equation (27) to the parameters as new independent variables, instead of
¥ and 7 , the equation is obtained from which it is

L~ froQH™ +HY = + 210 +£EH* -M

F= 1 S Ve (30)
SHTH S (k) fi, oo+ Y (kg
2 knzo ! fk,n z ! agk,n
kvn#0 n= 0

where, for the sake of brevity, the notation is introduced

Aok

N 0H >H. oH" oH™
M = E +C B+ +D E 31
anOBA afk n b O i E %) b 08 b 0 B GD

kvn#0

This has shown that function F explicitly depends only on parameters (21) and (22)
and such is also equation (25). Therefore, equation (25) does not explicitly depend on
characteristics of the external flow and, in that sense, it represents a universal equation of
the observed problem. The boundary conditions that are also universal are of the form

¢=0, @:O for n=0; %—Jfor n- o
on on

ka,,—O(k n=0,12,..;kvn #0) (32)
0 =0o(n) for cgkn—o (k1 =0,1,2,..:% 0)
DU—O

where ¢y(n)is Blasius's solution for the boundary layer on the plate.
Linear size # is still arbitrary and it is the one to be chosen before integrating equation
(25). On principle, it can be chosen in various ways; here, according to the ideas of
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BuSmarin and Saraev, it is thus chosen so that it turns out to be identical with the
thickness of the plane analogy impulse loss, that is, 7= 8" . Then from (29) we obtain that

H" =1, H = i* H (33)

(o]

while expression (30) for function g is reduced to the expression

0
F=2 - fi0@+H) -y, + g0+~ B? 4, ) . 0H O 34
% Jio( ) I:(O,l 81,0 P anO k, afkn kzl k P knD (34)

H kvn#z0 n=0 E

while equation (25) and boundary conditions (32) do not change their form.

It can be noticed that universal equation (25) is completely identical with the
universal equation of non-stationary plane MHD boundary layer obtained in Ref. [9], as
was expected regarding all that has previously been said.

Equation (25) with boundary conditions (32) should, in particular approximation, be
solved once and for all; the obtained universal results should be preserved in an
appropriate way and they should be used both for the plane problem - analogy and for the
described axisymmetrical problem. The obtained universal results can be used for making
general conclusions about the boundary layer development as well as calculations of
concrete cases.

If, for instance, the influence of parameters f, and fo,, g1 and pis preserved in
equation (25), as well as the influence of the derivatives with respect to f; o and g; o, while
the influence of the other parameters and their derivatives is neglected, the universal
equation in four-parameter twice-localized approximation is obtained

2 2

9
0= fioFX(: o)+ Phioy 020 * 810X (M &10) + Pe1o andg, o

(35)

where [ denotes the left side of equation (25). Function F, in the same approximation, is
obtained from expression (34) and is of the form

4 g O
F= 2[‘1 f10(2+H) Ef()l"'glo"' PB} Pho—— oH P80 — 0H O (36)
] 1.0 0210 §

The universal boundary conditions, in the same approximation, are

G6l0] G6l0]
=0, —=0 for n=0; — > 1 for -
¢ on 1 on 1 (37)

d=do(n) for f10=0; fo,=0; g,=0; p=0.

Equation (35) with boundary conditions (37) has already been solved in Ref. [9];
these results can be used both for plane problems and for axisymmetrical non-stationary
problems of boundary layer MHD on the rotary body. As for calculation of concrete
problems of the axisymmetrical non-stationary boundary layer on the rotary body it is
simply realized by using expressions (11), (12) and (13).
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PARAMETARSKA METODA U TEORLJI
NESTACIONARNOG OSNOSIMETRICNOG MHD
GRANICNOG SLOJA NA OBRTNOM TELU

Zoran B. Borici¢, DragiSa D. Nikodijevié¢, Dragica R. Milenkovi¢

U radu se razmatra osnosimetricni nestacionarni MHD granicni sloj na obrtnim telima. Prvo
je izvrSeno prosirenje Mangler-Stepanovih transformacija i pokazano da se jednacine
osnosimetricnog problema svode na jednacine odgovarajuceg ravanskog problema. Zatim je
koriséenjem parametarske metode dobijena univerzalna jednacina koja se poklapa sa univerzalnom
Jjednacinom odgovarajuceg ravanskog problema - ravanske analogije. Prakticno je pokazano da se
za reSavanje osnosimetricnog problema nestacionarnog MHD granicnog sloja na obrtnom telu
mogu koristiti reSenja ravanskog nestacionarnog MHD granicnog sloja.



