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EXTENSION OF THE BERNOULLI'S CASE
OF A BRACHISTOCHRONIC MOTION

TO THE MULTIBODY SYSTEM IN THE FORM
OF A CLOSED KINEMATIC CHAIN     

UDC 531.134

Vukman M. Čović, Mirjana M. Lukačević

Faculty of Mechanical Engineering, University of Belgrade, Yugoslavia

Abstract. Considering the brachistochronic motion in a homogeneous field of gravity
of the multibody system given in the form of a closed kinematic chain, free from
external constraints, we prove that the trajectory of the system in the part of the
configuration space (this part being the one which includes all the generalized
coordinates of the system except the Cartesian coordinate yC of the system's centre of
inertia referring to the vertical axis) is a geodesic. Having in mind that this geodesic is
completely determined by the known initial and terminal conditions given for the
brachistochronic motion considered, as well as by the nature of the mentioned part of
the configuration space, and using the fact that the configuration of our multibody
system in this part of the space is determined by the position of a representative point
on the geodesic, we further define the position of the whole system using two
coordinates only. One of them is the arc-lenght σ, which determine the position of a
representative point on the geodesic, and another is the coordinate yC, determining the
one-dimensional subspace of the configuration space. This subspace, together with the
subspace containing the geodesic, constitute the complete configuration space of our
system. Considering the motion of the system in such a way, we obtain the result
referring to the trajectory of the system which is completely analogous to the famous
Bernoulli's result, found in the case of a single particle. Obtained result is illustrated by
the numerical example.

Key words: Brachistochronic motion, Closed kinematic chain,
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1. INTRODUCTION

The problem of the motion of a mechanical system subject to the action of
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scleronomic holonomic ideal constraints, from the configuration defined by the initial
time t = t0 to the configuration specified by t = t1, demanding that the interval τ = t1 − t0
takes its minimal value (brachistocronic motion of the system) was considered from the
moment when John Bernoulli, in 1696, formulated and solved the brachistocrone
problem in the case of a free particle moving in a homogeneous field of gravity.

Extension of the Bernoulli's case to the system of particles was performed only in
view of deducing the differential equations of the brachistochronic motion of the system,
as well as of determining the generalized control forces which make possible such a
motion. Generalizations of such a kind can be found, for instance, in [2, 8] (in the case of
a conservative mechanical system), [6, 3] (where a non-conservative system was
considered), [1] (the case of a dissipative system), and [4, 9, 10] (where the non-
holonomic systems were treated). However, even in the case of a very simple mechanical
system of particles which moves in a homogeneous field of gravity, the results of the
Bernoulli's case referring to the trajectory along which the particle moves (this trajectory
being cycloid in a vertical plane - see, e.g., [7]), were not generalized, up to now.

In this paper we obtain such a generalization for a rather large class of mechanical
systems. Namely, we demonstrate that in the case of a system of rigid bodies forming a
closed kinematic chain, moving in a homogeneous field of gravity and free from external
constraints, there exists, concerning the trajectory of the system, a complete analogy with
the Bernoulli's case.

2. FORMULATION OF THE PROBLEM

We consider the mechanical system consisting of r rigid bodies forming a closed
kinematic chain (Fig.1) which moves in a homogeneous field of gravity. Each pair of the
two adjoining bodies in this chain represents a kinematic pair of the fifth class. Arbitrary
body (Si), where i = 2, 3, ..., r, can move having either rectilinear translation with respect
to the adjoining body (Si-1), or rotation about an axis fixed in (Si-1). There are no external
constraints imposed to the system, while the internal constraints are ideal.

In order to determine the configuration of the system of rigid bodies (further: the
multibody system) considered, we introduce the following frames of reference (Fig. 1):

Fig. 1
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- Inertial rectangular frame Oxyz, with the axis Oy directed vertically downwards;
- Translationally moving rectangular frame Aξηζ , attached to an arbitrary point A of

the body (S1), with Aξ   Ox, Aη   Oy.
Having in mind that the configuration of the body (S1) relative to Aξηζ  is defined by

means of Euler's angles ψ, θ, ϕ, it is evident that this body can be replaced by the
kinematic chain composed of three bodies (denoted by (V1), (V2), (V3), Fig.2), with
kinematic pairs of the fifth class. The first body (V1) from this chain has rotation ψ about
the axis Aζ, the second body (V2) has rotation θ about the axis attached to the body (V1)
and chosen so that  it coincides with Aξ when ψ = θ = ϕ = 0, and finally the third body
(V3) has rotation ϕ about the axis attached to (V2), chosen so that it coincides with Aζ
when ψ = θ = ϕ = 0. Masses of the bodies (V1), (V2), and consequently the elements of
their tensors of inertia, are equal to zero, while the third body (V3) is equivalent to the
body (S1) from a standpoint of the distribution of masses. In such a way we obtain the
new kinematic chain, equivalent to our original chain, with n = r + 2 bodies (V1), (V2), ...,
(Vn), for which we have

(Vi+2) = (Si),  i = 1,2,...,n.

It is evident that we can consider the motion of the system as to be compounded of a
translation, together with the pole A, and its motion relative to a frame Aξηζ . To describe
this relative motion, we shall choose the generalized coordinates q1, q2,... , qn, denoting
by q1, q2, q3 Euler's angles ψ, θ, ϕ, and by qk (k = 4, 5, ..., n) either the angle of rotation of
(Vk) relative to (Vk-1) about the axis defined by the unit vector ke , fixed in (Vk-1), or
rectilinear translation of (Vk) with respect to (Vk-1), in the direction defined by ke . Motion
of the pole A with respect to the system Oxyz is determined by its coordinates xA, yA, zA.
We note that coordinates q1, q2,..., qn are not mutually independent since our kinematic
chain is closed, but for the present we shall not eliminate redundant coordinates. The
position of the centre of inertia of the multibody system, C, is determined by the relation

Fig. 2
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the frame Axyz. Now, as the relations (1') determine xA, yA, zA in terms of xC, yC, zC and
q1,..., qn, it is evident that the configuration of the multibody system considered at time t
can be described by the set of generalized coordinates
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The conditions of closing the kinematic chain impose to the coordinates q1, ..., qn

following equations of constraint (ref. [11])
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where [Aj,k] denotes the matrix of orthogonal transformations of a vector coordinates
from a local frame of reference Ckξkηkζk, fixed in (Vk), to a local frame Cjξjηjζ j, fixed in
(Vj), and where ξk = 1 if the body (Vk+1) has translational motion with respect to the body
(Vk), ξk = 0 in the case of a rotational motion of (Vk+1) relative to (Vk), and kk ξ−=ξ 1 .
Vector q , appearing in (2), denotes the unit vector attached to the body (Vj) and
orthogonal to 1+ne , vector r  is given by

qer n ×= +1
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while the meaning of the vectors 1+ne , kkρ  and d  is evident from the Fig. 2.
If
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the relations (2) are not mutually independent1. In this case it is necessary to eliminate the
dependent equations of constraint. Without reducing the generality of our considerations,
we can further suppose that l independent equations of constraints are given by
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The kinetic energy of the multibody system considered has the form
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where aab(q1 ,..., qn) denotes the fundamental tensor in the space of coordinates q1 ,..., qn.
This tensor,as we can prove, has the form
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is a tensor of inertia of the rigid body (Vi),whose coordinates are given with respect to the
local frame of reference Ciξiηiζ i.

Introducing further the denotations
,, 21 ++ == n

C
n

C qzqx
we can write (5) in the form

                                                          
1 In (3), as well as further throughout the paper, the index a takes the values 1,2,...,n, white ν runs from 1 to l. In
the sequel the following indices will also be used: b = 1,2,...,n; ρ = 1,2,...,l; α,β,γ = 1,2,..., n, n+1, n+2;
π,θ = 1,2,..., m = n − l; ν', ρ' = m+1, m+2, ..., m+l = n. The repeated index will denote summation.
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The potential energy of the multibody system is

CygmV −= . (7)

Remembering now that as a consequence of (4) the coordinates q1, ..., qn are not
mutually independent,we further take, without loss in generality, the first m = n − l of
them as the independent ones, so that last l of them are dependent coordinates, for which,
in virtue of the theorem of the implicit function, we have
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where, as we already said, ν' = m + 1,..., m + l,  and π = 1,...,m.
The time our multibody system needs to move from a known initial position (P0),
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In the case of a brachistochronic motion from (P0) to (P1) of our multibody system,
analogous to the brachistochronic motion of a particle in the famous Bernoulli's case, we
require that
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is valid.

3. THE SOLUTION OF THE PROBLEM

Using (8), i.e. by eliminating the dependent coordinates, variational problem (9) gets
the form
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Having further in mind the form of the so formulated variational problem's constraint,
we deduce that in the subspace of the coordinates q1, q2,..., qm, xC, zC,  the demanded
trajectory of the brachistochronic motion of the system is a geodesic, which can be found
as a solution of the new constrained variational problem:

.
1

0
infd →σ∫

σ

,0),...,(  , 01)( 12 ==−σ νβα
αβ

nqqfdqdqa
m

d (10)

,  ,   , 0),...,(  , :0 0
2

0
1

0
1
00 zqxqqqfqq nnn =====σ ++νππ

,   ,    , 0),...,(   , : 1
2

1
1

1
1
111 zqxqqqfqq nnn ====σ=σ ++νππ

in which σ denotes the arc-length of the geodesic in the space of coordinates q1,..., qm,
qn+1, qn+2.

Using a multiplier rule, the problem (10) reduces to
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where the multipliers λ and µν are functions of σ to be determined. Since σ1 is not
prescribed and the integrand in (10') does not depend on σ explicitly, we easily find
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and the Euler's equations of the problem (10') read
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These equations, together with the relations (4), determine the geodesic demanded.
Constants of integration and the arc-length σ1 can be found from the conditions
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Now, having in mind that we found the trajectory of the multibody system in the
subspace of the coordinates q1,..., qm, xC, zC, and considering the motion of the system in
this subspace as the motion of a representative point along this known trajectory, we can
choose the arc-length σ, measured along this trajectory, as the coordinate determining the
position of the representative point, i.e. the position of our multibody system in the
subspace q1,..., qm, xC, zC. Then it is evident that the coordinates σ and yC may be chosen
to determine the position of our multibody system, and the kinetic energy T can be
written in the form
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so that the brachistochronic motion of the system can be determined from the variational
problem
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The solution of the so formulated problem is a cycloid, given with respect to the
orthogonal system of coordinates σ, yC , if we take t0 = 0, by the equations
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where ω denotes the constant of integration. This solution coincides with the solution of
the familiar Bernoulli's problem, referring to the free particle.

Finally, introducing the denotation
,1tω=χ

from (13) we easily obtain the relation
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Finding the minimal positive solution χ = χ0 of the equation (14), we determine time
of the brachistochronic motion of the multibody system considered
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4. NUMERICAL EXAMPLE

Plane mechanism ABDE (Fig. 3), consisting of the four  homogeneus rods each of
which having the mass m and lenght 2a, moves brachistochronically in the plane Oxy
with the axis Oy directed vertically downwards. The rods are connected at their ends by
pins. If the mechanisms starts moving from rest, and if its initial and terminal
configurations are given by

, )3,33(  , )3,33(  , )2,3(:

),,(  , ),(  , ),(:0

1 aaaDaaaBaaAtt

aaDaaBaaAt

+−=

−−−=
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determine the time t1 of a brachiststochronic motion of the mechanism.

Solution. Choosing the angles ϕ, θ and Cartesian coordinates CC y,x of mechanism's
inertia centre as the indepepedent generalized coordinates determining the position  of the

mechanism (see Fig. 2), the kinetic energy of the
mechanism can be written in the form

θϕ+θ+ϕ++= 2222222
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3
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while the expression for the potential energy function
reads

.mgy4V C−= (18)
The motion of the mechanism considered in the space of coordinates Cx,,θϕ  can be

substituted by the motion of reprensetative point along a geodesic whose element of the
arc-length is given by (see (10))
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The differential equations of this geodesic are (see (10') and (11)) whence, taking
σ(t = 0) = 0, can be obtained
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where kϕ, kθ, and kx are constants.
Relations (19) and (20) lead to

2
010101

22
01

22
01

22
11

2 )())((
3
4)(

3
2)(

3
4)( xxaaat −+θ−θϕ−ϕ+θ−θ+ϕ−ϕ=σ=σ

wherefrom, as

,3,
3

2,
6

:

,0,
2

,0:0

1111

000

axxtt

xxt

C

C

==π=θ=θπ=ϕ=ϕ=

==π=θ=θ=ϕ=ϕ=

Fig. 3.
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it is easy to find

.1486268.39
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4
363

2
363

4 222

1 aa =+π+π+π=σ

Finally, as in the case considered yc(t1) = y1 =3a, the relation  (14) reads

,0)cos1(0495423.1sin =χ−−χ−χ

where from χ0 = 2.490437, and (15) leads to

.sec0278341.11 =t
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UOPŠTENJE BERNULIJEVOG SLUČAJA
BRAHISTOHRONOG KRETANJA NA SISTEM KRUTIH TELA

U OBLIKU ZATVORENOG KINEMATIČKOG LANCA
Vukman M. Čović,  Mirjana M. Lukačević

Rešava se problem brahistohronog kretanja zatvorenog kinematičkog lanca, slobodnog od
spoljašnjih veza u homogenom polju teže. Geometrizacijom problema ovo se kretanje razmatra u
konfiguracionom prostoru koji se može razdvojiti na dva potprostora - jedan je jednodimenzioni i
određen Dekartovom koordinatom središta masa sistema koja odgovara vertikalnoj osi, yC, a drugi
obuhvata sve ostale generalisane koordinate sistema. Pokazuje se da je u tome drugom potprostoru
trajektorija sistema geodezijska linija. Birajući dalje za koordinate koje određuju položaj sistema
luk te geodezijske linije i koordinatu yC, dobija se rezultat koji se potpuno poklapa sa poznatim
Bernulijevim rezultatom koji se odnosi na slučaj  brahistohronog kretanja jedne materijalne tačke.
Rezultat rada ilustrovan je primerom.


