
FACTA UNIVERSITATIS  
Series: Architecture and Civil Engineering Vol. 18, No 3, 2020, pp. 241-260 

https://doi.org/10.2298/FUACE200422018Z 

© 2020 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

MATHEMATICAL INTERPRETATION OF SEISMIC WAVE 

SCATTERING AND REFRACTION ON TUNNEL STRUCTURES 

OF CIRCULAR CROSS-SECTION  

UDC 550.344.094.4 

    517.518.45 

    624.19 

 Elefterija Zlatanović1, Vlatko Šešov2, Dragan Lukić3, Zoran Bonić1 

1University of Niš, Faculty of Civil Engineering and Architecture of Niš, Niš, Serbia 
2University “Ss. Cyril and Methodius” of Skopje, Institute of Earthquake Engineering and 

Engineering Seismology, Skopje, North Macedonia 
3University of Novi Sad, Faculty of Civil Engineering of Subotica, Subotica, Serbia 

Abstract. Mathematical interpretation of the elastic wave diffraction in circular 

cylinder coordinates is in the focus of this paper. Firstly, some of the most important 

properties of Bessel functions, pertinent to the elastic wave scattering problem, have 

been introduced. Afterwards, basic equations, upon which the method of wave function 

expansions is established, are given for cylindrical coordinates and for plane-wave 

representation. In addition, steady-state solutions for the cases of a single cavity and a 

single tunnel are presented, with respect to the wave scattering and refraction 

phenomena, considering both incident plane harmonic compressional and shear waves. 

The last part of the work is dealing with the translational addition theorems having an 

important role in the problems of diffraction of waves on a pair of circular cylinders. 
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1. INTRODUCTION 

In a boundless medium of homogeneous characteristics, seismic waves propagate 

without interruption, with a constant velocity and along a certain path. The presence of an 

inhomogeneity in the ground properties generally produces a significant influence on 

waves propagating through the medium.  
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The wave, which emanates from infinite depth in one of the media, is called the 

incident wave. After impinging on inhomogenity (obstacle), the path of the wave 

propagation is changed, i.e. waves reflect and refract in indistinct patterns depending on 

the shape and properties of irregularity and surrounding ground. When an incident body 

wave, propagating through elastic medium, arrives at any discontinuity (e.g., free surface, 

empty cavity, crack), it will be fully returned back into the medium (reflected waves). 

This is the special case of the second medium that cannot transmit mechanical waves, 

like a vacuum or air, when the incident wave is completely reflected. For the case of 

incident seismic waves arriving at the contact surface with another elastic medium (e.g., 

another ground layer or tunnel lining), a part of its energy will be transmitted into the 

other medium (refracted waves), whereas the remaining energy will return back into the 

first medium (reflected waves) [1].  

When excited by the undisturbed incident wave, the obstacle acts as a secondary 

source by emitting waves radially outward from itself. The deviation of the wave from its 

original path is considered to be diffraction, whereas the radiation of secondary waves 

from the obstacle is referred to as scattering. Diffraction and scattering result in 

amplification and deamplification of the incident seismic waves in the region near the 

obstacle, which stands for a phenomenon known as dynamic stress concentration [2]. 

The methods of studying the diffraction of elastic waves are not much different from 

those concerning other types of waves, owing to physical similarity and mathematical 

analogy. Nevertheless, there is an additional difficulty in the analysis, as the incident 

wave diffraction phenomenon in isotropic elastic medium is associated with the 

coexistence of two types of scattered waves with distinct wave propagation velocity, in 

contrast to one acoustical or electromagnetic wave in air. In order to understand the 

nature of the reflected and the refracted waves, the case of wave propagation in two-

layered elastic formation is considered, as illustrated in the following figure (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Breaking down of elastic wave at the boundary between two elastic media [1] 

 

In general, it should be anticipated that a P-wave incident on the interface of two 

elastic media will give rise to reflection and transmission of P-waves, but also to 

reflection and transmission of transverse SV-waves with the displacement polarised in 

vertical plane. Similarly, the vertical component of an S-wave (SV-wave) will cause the 

appearance of a reflected SV-wave and a P-wave, as well as a refracted SV-wave and a P-

wave. The horizontal component of the S-wave (SH-wave), however, is associated with 

occurrence of only S-waves: a reflected SH-wave and a refracted SH-wave.   
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If a body has a finite cross-sectional dimension, such as a circular cylinder of infinite 

length, waves bounce back and forth between the bounding surfaces. Although it is very 

difficult to trace the actual reflections in that case, it can be observed that the general 

direction of energy transmission is in a direction parallel to the bounding surfaces, and it 

is said that the waves are propagating in a waveguide. Hence, there is a standing wave 

across the cross-section of the body and a travelling wave in the direction of the 

waveguide [3]. 

2. BESSEL FUNCTIONS AND CERTAIN OF THEIR PROPERTIES 

The subsequent brief introduction to Bessel functions and their most important 

characteristics for analysis of the elastic wave diffraction and scattering problem has 

included the works of Mow and Pao [2], Abramowitz and Stegun [4], Watson [5], and 

Ivanov [6].  

2.1. Bessel’s equation 

The second-order differential equation of the form: 
 

𝑥2
d2𝑦

d𝑥2
+ 𝑥

d𝑦

d𝑥
+ (𝑥2 − 𝜈2)𝑦 = 0                                             (1) 

 

is known as Bessel’s equation of order ν. It is characterised by two singular points: the 

regular singular point x = 0 and the irregular singular point x = ∞. 

The constant ν defines the order of the Bessel functions found as the solution to the 

Bessel’s differential equation and can take on any real-numbered value. In case of 

cylindrical problems, the order of the Bessel function is an integer value (ν = n).  

Considering that the Bessel’s differential equation is a second-order equation, there 

must be two linearly independent solutions. Typically the general solution is given as: 
 

𝑦 = 𝐴𝐽𝜈(𝑥) + 𝐵𝑌𝜈(𝑥)                                                      (2) 
 

The functions Jν (x) and Yν (x) are the solutions of Eq. (1).  

The former is called the Bessel function of the first kind of order ν, whereas the latter 

is called the Bessel function of the second kind of order ν and is sometimes referred to as 

a Weber function or a Neumann function Nν(x). 

2.2. Bessel function of the first kind 

The Bessel functions of the first kind of integer order n = 0, 1, 2, and 3 are shown in 

Fig. 2. 

From Fig. 2 it is perceivable that Jn are oscillatory functions and, in fact, they resemble 

damped trigonometric functions. In particular, the behaviour of J0 looks like a cosine curve 

with slight damping, whereas Ј1 resembles that of the sine function. In addition, the graph 

illustrates the property of the Bessel function that, as n is being of a higher value, the Bessel 

function starts up much slower. After this initial sluggish start for larger values of n, the 

functions behave roughly like a sine (odd n) or cosine (even n) multiplied by a magnitude 

factor that decays slowly as x → ± ∞. 
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Fig. 2 Presentation of the Bessel functions of the first kind of integer orders:  

     (left) on the real line for n = 0, 1, 2, 3; (right) in the complex plane 

2.3. Bessel function of the second kind 

Based on Fig. 3, it is obvious that as x → 0 all Yn (x) → -∞ due to the logarithmic 

singularity. Therefore, plots start a little away from 0. The functions with the higher 

values of n diverge to infinity (-∞) more rapidly as x tends to 0. After the initial 

divergence, the functions settle into the familiar damped oscillation. Yn (x) is neither an 

even nor odd function of x. 

.  

  

 

 

 

  
 

 

 

Fig.3 Presentation of the Bessel functions of the second kind of integer orders:  

 (left) on the real line for n = 0, 1, 2, 3; (right) in the complex plane 

 

Considering the two functions J and Y of any order, e.g. J0 and Y0, on the same graph 

(Fig. 4), it is perceptible that for larger x they resemble damped trigonometric functions 

differing only in a phase shift. 

 

 

 

 

 

 

 
 

Fig. 4 Presentation of the Bessel functions of the first and second kind of order n = 0 
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2.4. Hankel functions of the first and second kind 

The Hankel functions of order ν represent the complex sum of the Bessel functions of 

the first and second kind (in which i = √−1 designates the imaginary unit): 
 

𝐻𝜈
(1)(𝑥) = 𝐽𝜈(𝑥) + i𝑌𝜈(𝑥)                                                    (3) 

𝐻𝜈
(2)(𝑥) = 𝐽𝜈(𝑥) − i𝑌𝜈(𝑥)                                                    (4) 

 

The functions 𝐻𝜈
(1)(𝑥) and 𝐻𝜈

(2)(𝑥) are called the Hankel functions of the first and 

second kind of order ν, respectively, and are also known as the Bessel functions of the 

third kind. Owing to the linear independence of the Bessel function of the first and 

second kind, the Hankel functions provide an alternative pair of solutions to the Bessel 

differential equation. Both of the functions are infinite at x = 0 and their fruitfulness is 

related to their behaviour for large values of x, in other words, the series cannot be used 

for very large values of x. The behaviour of the Hankel functions can be introduced 

through the properties of J and Y (Figs. 5 and 6). 

 

  

   
 
 

 

 

 

 

 

 

 

Fig. 5 Presentation of the Hankel functions of the first kind of integer orders: 

    (left) on the real line for n = 0, 1, 2, 3; (right) in the complex plane 

 

   
 
 

 

 

 

 

 

 

 

 

Fig. 6 Presentation of the Hankel functions of the second kind of integer orders: 

             (left) on the real line for n = 0, 1, 2, 3; (right) in the complex plane 
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3. WAVE EQUATIONS AND SOLUTION IN CYLINDRICAL COORDINATES 

In vector notation, displacement equations of motion, which govern the motion of a 

homogeneous, isotropic, linearly elastic medium of infinite extent, are a system of partial 

differential equations of the following form [3]: 
 

(𝜆 + 𝜇)𝛁𝛁 ∙ 𝐮 + 𝜇∇2𝐮 + 𝜌𝐟 = 𝜌�̈�             (5) 
 

where dots over a quantity mean the partial derivative with respect to time t, ρ is the mass 

density, λ and μ are known as Lame’s constants, u and f are displacement vector and 

force vector, respectively, whereas 𝛁 is the vector differential operator (nabla) and ∇2 is 

the Laplacian, given as follows (with e1, e2, and e3 being the unit vectors of the coordinate 

axes xi): 

𝛁 =
𝜕

𝜕𝑥1

𝐞𝟏 +
𝜕

𝜕𝑥2

𝐞𝟐 +
𝜕

𝜕𝑥3

𝐞𝟑                                                 (6) 

 

∇2=
𝜕2

𝜕𝑥1
2

+
𝜕2

𝜕𝑥2
2

+
𝜕2

𝜕𝑥3
2

                                                     (7) 

 

3.1. Displacement potentials and reduction to wave equations 

The previously presented system of equations (Eq. 5) implies three displacement 

components. One of the possibilities the system to be uncoupled is to express the 

components of the displacement vector in terms of derivatives of potentials. 

By applying the Helmholtz decomposition theorem [3], the displacement fields can be 

represented as superposition of longitudinal and transverse vector components. This 

procedure is known as the Helmholtz decomposition of a vector, and it states that any 

vector field can be expressed as the sum of the gradient of a scalar field φ and the curl of 

a vector field ψ: 
 

𝐮 = 𝛁𝜑 + 𝛁 × 𝛙                                                       (8) 
 

where φ stands for the scalar displacement potential and ψ represents the vector 

displacement potential. Substituting the displacement representation (Eq. 8) into Eq. (5) 

and considering that 𝛁 ∙ 𝛁𝜑 = ∇2𝜑 and 𝛁 ∙ 𝛁 × 𝛙 = 0, the equation of motion (when 

body forces are neglected) can be rewritten as: 
 

𝛁[(𝜆 + 2𝜇)∇2𝜑 − 𝜌�̈�] + 𝛁 × [𝜇∇2𝛙 − 𝜌�̈�] = 0                          (9) 
   

and it is clearly satisfied if: 

cP
2∇2𝜑 = �̈�                                                        (10) 

 

cS
2∇2𝛙 = �̈�                                                       (11) 

 

where cP and cS are the corresponding wave propagation velocities in the elastic medium: 
 

𝑐𝑃 = √
𝜆 + 2𝜇

𝜌
                                                         (12) 
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𝑐𝑆 = √
𝜇

𝜌
                                                                 (13) 

 

The wave arising from 𝛁𝜑 is the primary wave (P-wave) with propagation velocity 

cP, whereas the one from 𝛁 × 𝛙 is the secondary wave (Ѕ-wave) with propagation 

velocity cS. The displacement potentials φ and ψ satisfy a scalar and a vector wave 

equation, respectively. Equations (10) and (11) are uncoupled wave equations. 

Since ψ gives rise to a shear wave, the resolution of a plane shear wave into SV-wave 

and SH-wave (Fig. 7) suggests that ψ may be decomposed into two parts. The first part is 

a vector along a preferred direction, usually one of the coordinate axes, e.g. e3, and the 

other one is perpendicular to the first vector, i.e. in the x1Ox2-рlanе. Consequently, the 

following expression arises: 
 

𝛙 = 𝜓𝐞𝟑 + 𝛁 × (𝜒𝐞𝟑)                                               (14) 
 

where ψ and χ are two scalar functions. 

 

 

 

 

 

 

 
 

Fig. 7 Polarisation of S-wave 

 

Taking into consideration the Helmholtz decomposition theorem for representation of 

the displacement fields as the superposition of longitudinal and transverse vector 

components, the displacements are obtained in the following form: 
 

𝐮 = 𝛁𝜑 + 𝛁 × (𝜓𝐞𝟑) + 𝛁 × 𝛁 × (𝜒𝐞𝟑)                                   (15) 
 

in which the second member  𝛁 × (𝜓𝐞𝟑) = 𝛁(𝜓) × 𝐞𝟑 is perpendicular to the unit vector 

e3, whereas the third component is defined by the unit vector e3. If e3 is taken along the 

wave normal, ψ and χ give rise to the plane SV- and SH-wave, respectively. Scalar 

potentials φ, ψ, and χ satisfy the following scalar wave equations: 
 

      cP
2∇2𝜑 = �̈� 

    cS
2∇2𝜓 = �̈�                                                    (16) 

     cS
2∇2𝜒 = �̈� 

 

The wave equations reduce to the familiar Helmholtz equation for steady-state 

response [3]. Steady-state solutions are considered to be of the following form: 
 

𝜑(𝑥𝑖 , 𝑡) = 𝜙(𝑥𝑖 , 𝜔) e−i𝜔𝑡                                            (17) 
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where xi are coordinates of the position vector x. 

If a steady-state solution of the form given in Eq. (17) is substituted into the wave 

equation with inhomogeneous terms: 
 

∇2𝜑(𝑥𝑖 , 𝑡) −
1

𝑐2
�̈�(𝑥𝑖 , 𝑡) = −𝐹(𝑥𝑖 , 𝜔) e−i𝜔𝑡                            (18) 

 

the following equation is introduced: 
 

∇2𝜙(𝑥𝑖 , 𝜔) + 𝑘2𝜙(𝑥𝑖 , 𝜔) = −𝐹(𝑥𝑖 , 𝜔)                               (19)                                    
 

where k = ω/c is the so-called wavenumber, which represents the number of wavelengths 

L over 2π (k = 2π/L), ω is circular frequency ω = 2πf (radians per unit time) with f being 

the frequency (in Hz), and c is the wave propagation velocity. 

The homogeneous form of Eq. (19) is called the space form of the wave equation, 

which is known as Helmholtz equation. 

3.2. Solutions to the Helmholtz equation in cylindrical coordinates 

If the function φ is of the form  𝜑(𝑟, 𝜃, 𝑧, 𝑡) = 𝜙(𝑟, 𝜃, 𝑧, 𝜔) e−i𝜔𝑡, it must satisfy the 

Helmholtz scalar wave equation (the homogeneous form of Eq. (19)) that in the system of 

cylindrical coordinates (r, θ, z) has the following form: 
 

∇2𝜙(𝑟, 𝜃, 𝑧, 𝜔) + 𝑘2𝜙(𝑟, 𝜃, 𝑧, 𝜔) = 0                                  (20) 
 

in which case the Laplacian is defined as: 
 

∇2=
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
+

𝜕2

𝜕𝑧2
                                          (21) 

 

The corresponding wave functions are usually derived by separating the variables in 

the wave equations (method of separation of variables [2]). If the particular solution to 

Eq. (20) is sought in the form of the product of three functions:  
 

𝜙(𝑟, 𝜃, 𝑧) = 𝑅(𝑟) 𝛩(𝜃) 𝑍(𝑧) ≠ 0                                     (22) 
 

where each of these functions depends only on one coordinate, then the Helmholtz 

equation can be separated into three ordinary differential equations, one for each 

coordinate at the time: 
 

𝑟2𝑅′′ + 𝑟𝑅′ + (𝑘2𝑟2 − 𝜈2)𝑅 = 0                                   (23) 
 

𝛩′′ + 𝜈2𝛩 = 0                                                   (24) 
 

𝑍′′ + 𝛾2𝑍 = 0                                                   (25) 
 

in which ν and γ are separation constants.  

The equation with the variable r is the radial function, whereas the other two are 

angular functions. Therefore, the product of the radial and angular functions constitutes 

the cylindrical wave functions. The solutions for Θ and Z are: 
 

𝛩 = e±i𝜈𝜃                                                       (26) 
 

𝑍 = e±i𝛾𝑧                                                      (27) 
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The solutions of the equation for Θ (θ) are sines and cosines of the argument νθ. For 

most problems of interest, Θ must be single valued, i.e. Θ (θ + 2π) = Θ (θ), in which case 

ν can only be zero or an integer n. In addition, the solutions should be continuous 

functions of θ, with continuous derivatives, thus requiring ν = n.  

The equation Eq. (22) is the Bessel ordinary differential equation, and accordingly, its 

solutions are Bessel functions. The solution to R(r), when ν = n, can be expressed in 

terms of either the Bessel functions of the first and second kind, Jn (kr) and Yn (kr), or the 

Hankel functions of the first and second kind, Hn
(1), (2)(kr). The choice of the radial 

function is dependent upon the physics of the problem. 

As it has been discussed in Section 2.2, the function Jn (x) is regular at the point x = 0. 

Therefore, this function is ordinarily used for constructing a general solution to Eq. (20) 

inside the cylindrical region containing within itself r = 0, thus representing the waves 

that propagate towards the interior of the cylinders.  

On the other hand, functions Hn
(1),(2)(x), when are combined with the time factor e–iωt, 

represent cylindrical waves generated by a source on an obstacle. At the point x = 0, these 

functions have a logarithmic singularity. The function Hn
(l)(kr) e–iωt represents a diverging or 

outgoing cylindrical wave; that is, the waves as generated by a circular barrier propagating 

away from its centre. Similarly, the function Hn
(2)(kr) e–iωt represents a converging or 

incoming cylindrical wave. The boundary condition at r = ∞ in this problem eliminates the 

latter from the scattered waves. Namely, the scattered waves should satisfy the equations of 

motion and at infinity, in the unbounded region outside the cylinder, the condition of radiation 

(the Sommerfeld radiation conditions [3]), and by that, these functions represent outgoing 

waves that emanate from the origin of the circular cylinder. Therefore, only the function with 

Hn
(l)(kr) can be used in a definition of the scattered wave field. 

Accordingly, the particular solutions to the Helmholtz equation (Eq. (20)) will be the 

following functions: 
 

𝐽𝑛(𝑘𝑟) ei𝑛𝜃ei𝛾𝑧                                                        (28) 
 

𝐻𝑛
(1)(𝑘𝑟) ei𝑛𝜃ei𝛾𝑧                                                       (29) 

 

The separation constants γ and k may be referred to as propagation constants in z and r 

directions, respectively, although they are related by Eq. (20) as 𝑘2 = 𝜔2/𝑐2  − 𝛾2, and are 

to be determined from the corresponding boundary conditions of the problem. Thus, for 

example, if a wave is propagating in the xOy-plane, then 𝜙 will be independent of z and γ = 0. 

It follows that k = ω/с, which is the common definition of the wavenumber. Generally, the 

separation constant γ could be complex. Therefore, the field is not necessarily periodic along 

the z-axis.  

Bessel’s equation, given by Eq. (1) at the beginning, is applicable in those cases when 

the solution is oscillatory in r and exponential in z. In other problems, the homogeneous 

boundary conditions are on the surfaces of constant z, making the solutions oscillatory in 

z. In those cases, the separation constant has a sign opposite to that in the presented 

Bessel’s equation, and the resulting radial displacement is the modified Bessel equation, 

in which case the solution are the modified Bessel functions of the first and second kind, 

In (kr) and Kn (kr), respectively. 
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4. WAVE FUNCTIONS EXPANSION METHOD 

The essence of the method of wave functions expansion is in expressing the 

corresponding waves in terms of a series of wave functions [2]. In finding the solution of 

diffraction problems by this method, the diffracting body is usually represented in the 

form of a sum of a known primary field and an unknown secondary field scattered on 

barriers. The field inside the scattering body is taken in the form of an infinite series of 

primary wave functions, not having singularities in the volume of the body, whereas the 

field outside is superposed in the form of an infinite series of primary wave functions that 

satisfy the condition of radiation at infinity. The unknown coefficients in the series 

expansion are determined from the magnitude of the incident waves and the appropriate 

boundary conditions. 

This method has gained importance and is widely used due to the rapid convergence of the 

series solution. The fast convergence of the series solution is achieved in particular for the 

case of low-frequency waves with long wavelengths (i.e., small wavenumber k), and in the 

neighborhood of the obstacle (i.e., small x), whereas for the case of much shorter incident 

wavelengths (high frequencies), or for greater distances from the obstacle, the series solution 

converges considerably slower. 

Nevertheless, only regular-shaped scatterers, such as circular, elliptical, and parabolic 

cylinders, spheres, etc., are suitable for this method. For problems approximated by plane 

strain and anti-plane strain, this method is applicable to scatterers of circular, elliptical, or 

parabolic cross-section, because the obstacle must be of the shape of a long cylinder.  

As circular-cylinder-shaped scatterers are in the focus of this study, for this concern, 

in the subsequent part the general solutions for wave equations in circular cylinder 

coordinates will be presented, considering the steady-state time-harmonic waves. Having 

in mind that the transient solution is usually determined based on the steady-state 

solution, accordingly, no generality is lost in the presentation. 

5. STEADY-STATE SOLUTION FOR A CAVITY AND A TUNNEL  

UNDER INCIDENT PLANE HARMONIC WAVES 

For the purpose of the following presentation of the steady-state solution concerned 

with incident plane harmonic waves, an obstacle (cavity/tunnel) is assumed to be a long, 

uniform cylinder with a circular cross-section in a boundless medium, which is referred 

to a coordinate system as shown in Fig. 8. It is common to take the axis of the cylinder 

along the z-direction, and the wave normal p of a plane wave, in general case, to be 

inclined to the z-axis (oblique incidence). 

 

 

 

 

 

 

 

 

 

Fig. 8 Plane wave geometry 
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According to Fig. 8, the unit vector p makes an angle δ0 with the z-axis (out-of-plane 

incidence angle) and its projection in the xOy-plane is at an angle θ0 relative to the x-axis 

(in-plane incidence angle), i.e. θ0 is the angle that the normal of intersection between the 

xOy-plane and the wave front makes with the x-axis. Accordingly, for θ0 = 0 the incident 

seismic waves will be parallel to xOz-plane, whereas for θ0 = π/2 the incident waves are 

parallel to yOz-plane. On the other hand, for δ0 = π/2 the plane-strain conditions are valid. 

In case when the propagation vector is at an arbitrary angle with the longitudinal cylinder 

axis, a full three-dimensional treatment of the problem is required. Yet, the solution can 

be formulated in a manner for which the plane-strain approximation can be applied. 

5.1. Expansion of incident plane waves for cylindrical wave functions 

5.1.1. Incident plane harmonic P-wave in cylindrical coordinates 

The incident plane P-wave in polar coordinates, in general case, is represented by 

infinite Fourier–Bessel series [2, 3]:  
 

𝜑𝑖𝑛𝑐(𝑟, 𝜃, 𝑧, 𝑡) = 𝜑0 ei𝑘𝑝𝑧 cos 𝛿𝑃 e−i𝜔𝑡 ∑ i𝑛 𝐽𝑛(𝑘𝑃𝑟 sin 𝛿𝑃) ei𝑛(𝜃−𝜃0)

∞

𝑛=−∞

          (30) 

 

For the potential φinc in Eq. (30), the z-dependence is separated from the remaining 

space and time variables. By introducing the relations 𝛼 = 𝑘𝑃 sin 𝛿𝑃 and 𝛾𝑃 = 𝑘𝑃 cos 𝛿𝑃, 

the expansion of the plane P-wave for the cylindrical wave functions is found to be: 
 

𝜑𝑖𝑛𝑐(𝑟, 𝜃, 𝑧, 𝑡) = 𝜑0 ei(𝛾𝑝𝑧−𝜔𝑡) ∑ i𝑛 𝐽𝑛(𝛼𝑟) ei𝑛(𝜃−𝜃0)

∞

𝑛=−∞

                      (31) 

 

where α is the compressional wavenumber and  𝛼2 = 𝑘𝑃
2 − 𝛾𝑃

2 = 𝜔2 𝑐𝑃
2⁄ − 𝛾𝑃

2. 

In plane-strain conditions (δP = π/2), when γP = 0, the compressional wavenumber 

will be of the form 𝜶 = 𝒌𝑷 = 𝝎 𝒄𝑷⁄  (Section 3.1). 

5.1.2. Incident plane harmonic S-wave in cylindrical coordinates 

Scattering due to each component of S-wave can be treated independently. 

In accordance with this, the expansion of the plane S-wave for the cylindrical wave 

functions in terms of Fourier–Bessel series is of the following form:  

𝜓𝑖𝑛𝑐(𝑟, 𝜃, 𝑧, 𝑡) = 𝜓0 ei(𝛾𝑠𝑧−𝜔𝑡) ∑ i𝑛 𝐽𝑛(𝛽𝑟) ei𝑛(𝜃−𝜃0)

∞

𝑛=−∞

                    (32) 

𝜒𝑖𝑛𝑐(𝑟, 𝜃, 𝑧, 𝑡) = 𝜒0 ei(𝛾𝑠𝑧−𝜔𝑡) ∑ i𝑛 𝐽𝑛(𝛽𝑟) ei𝑛(𝜃−𝜃0)

∞

𝑛=−∞

                    (33) 

in which β is the shear wavenumber referring to the relations 𝛽 = 𝑘𝑆 sin 𝛿𝑆 and 𝛾𝑆 =

𝑘𝑆 cos 𝛿𝑆, from what follows that 𝛽2 = 𝑘𝑆
2 − 𝛾𝑆

2 = 𝜔2 𝑐𝑆
2⁄ − 𝛾𝑆

2. 
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Likewise the case of an incident P-wave, considering plane-strain conditions, δS = 

π/2, thus implying that γS = 0 and the shear wavenumber is of the form  𝜷 = 𝒌𝑺 = 𝝎 𝒄𝑺⁄ . 

5.2. Scattered wave field around a cavity 

Considering a circular cylindrical cavity, the incident wave, upon impinging on its 

contour, will be fully reflected. In accordance with the Huygens' principle [3], after the 

boundary of the cavity has been struck by the incident wave, each particle on the cavity 

contour acts as a secondary source generating waves that propagate away from the 

structure. Thus generated waves constitute the scattered waves. The solution to the 

diffraction problem, which is based on direct application of the Huygens’ theory and 

satisfies the condition of radiation at infinity, is always unique.  

5.2.1. Scattered wave field induced by an incident plane harmonic P-wave  

When the incident P-wave arrives at the contour of an empty circular cylindrical 

cavity, it will be fully returned back into the medium. For the case of an elastic, 

homogeneous, isotropic medium, two waves are reflected from the boundary – a P-wave 

with component φ and an S-wave with components ψ and χ. In accordance with the 

discussion presented in Section 3.2 and the particular solution to the Helmholtz equation 

in circular coordinates given by Eq. (29), the scattered waves are assumed as:  
 

𝜑𝑠𝑐𝑎𝑡(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑝𝑧−𝜔𝑡) ∑ 𝐴𝑛(𝜔) 𝐻𝑛
(1)(𝛼𝑟) ei𝑛𝜃

∞

𝑛=−∞

                           (34) 

 

𝜓𝑠𝑐𝑎𝑡(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑠𝑧−𝜔𝑡) ∑ 𝐵𝑛(𝜔) 𝐻𝑛
(1)(𝛽𝑟) ei𝑛𝜃

∞

𝑛=−∞

                            (35) 

 

𝜒𝑠𝑐𝑎𝑡(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑠𝑧−𝜔𝑡) ∑ 𝐶𝑛(𝜔) 𝐻𝑛
(1)(𝛽𝑟) ei𝑛𝜃

∞

𝑛=−∞

                            (36) 

 

where the superscript “scat” has the meaning of the scattered field. 

The shear wavenumber of the scattered S-waves is related to the compressional 

wavenumber of the incident P-wave by 𝛽2 = 𝑘𝑆
2 − 𝛾𝑃

2 = 𝜔2 𝑐𝑆
2⁄ − 𝛾𝑃

2 = 𝜅2𝑘𝑃
2 −

𝛾𝑃
2 = 𝑘𝑃

2(𝜅2 − cos2 𝛿𝑃), where the coefficient 𝜅 = 𝑐𝑃 𝑐𝑆⁄ = 𝑘𝑆 𝑘𝑃⁄  as a function of 

Poisson’s ratio ν is: 
 

𝑐𝑃

𝑐𝑆

= 𝜅 = √
𝜆 + 2𝜇

𝜇
= √

2(1 − 𝜈)

1 − 2𝜈
                                         (37) 

 

Therefore, the total wave field then would be: 

{

𝜑 = 𝜑𝑖𝑛𝑐 + 𝜑𝑠𝑐𝑎𝑡

𝜓 = 𝜓𝑠𝑐𝑎𝑡

𝜒 = 𝜒𝑠𝑐𝑎𝑡

                                                    (38) 
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The unknown scattering coefficients An, Bn, and Cn are to be determined for 

appropriate boundary conditions that must be satisfied on the surface of the body.  

The appropriate boundary condition for a cylindrical cavity of radius b is a traction-

free surface at r = b (0 ≤ θ ≤ 2π), i.e. vanishing radial stress and shear stress components: 

{

𝜎𝑟𝑟 = 0
𝜎𝑟𝜃 = 0
𝜎𝑟𝑧 = 0

          𝑟 = 𝑏                                                    (39) 

The corresponding stresses are in terms of the displacement potentials due to all the 

waves (see Appendix). The coefficients for each order of n are obtained in the closed 

form. The stress and displacement fields are determined once the coefficients are known. 

5.2.2. Scattered wave field induced by an incident plane harmonic S-wave 

The scattering problem considering an incident plane S-wave can be solved in the 

same manner as the case of a plane P-wave. Namely, scattered waves induced by an 

incident S-wave are also representable by Eqs. (34)–(36), only with the relation of the 

compressional wavenumber of the scattered P-waves to the shear wavenumber of the 

incident S-wave given by 𝛼2 = 𝑘𝑃
2 − 𝛾𝑆

2 = 𝜔2 𝑐𝑃
2⁄ − 𝛾𝑆

2 = 𝑘𝑆
2 𝜅2⁄ − 𝛾𝑃

2 =

𝑘𝑆
2(1 𝜅2⁄ − cos2 𝛿𝑆). 

Considering that κ = cP/cS  > 1 (the longitudinal wave velocity cP is always greater 

than the transverse wave velocity cS), the wave number α will be imaginary whenever 

cosδs  ≥ 1/κ2. By that, the Hankel function Hn
(1) (iαr) changes to the nonoscillatory 

modified Bessel function of the second kind Kn (αr) [2]. The value δs = cos – 1 (1/κ2) 

represents the critical angle, which is the same as the angle for the case of the total 

reflection of an SV-wave by a plane surface. For values below the critical angle, the 

scattered P-wave becomes the surface wave that decays rapidly away from the surface of 

cylinder.  

The total wave field, considering the case of an incident plane harmonic S-wave 

scattered by an empty circular cylindrical cavity embedded in an elastic medium, is: 

{

𝜑 = 𝜑𝑠𝑐𝑎𝑡

𝜓 = 𝜓𝑖𝑛𝑐 + 𝜓𝑠𝑐𝑎𝑡

𝜒 = 𝜒𝑖𝑛𝑐 + 𝜒𝑠𝑐𝑎𝑡

                                                      (40) 

Lastly, it could be concluded that it is easy to calculate displacements and stresses in 

the medium around a cylindrical cavity as long as the unknown coefficients are 

determined. Using the boundary conditions on the surface of the cavity (Eq. (39)), along 

with the condition of radiation at infinity of the secondary wave field scattered by the 

cavity contour, and with the orthogonality conditions provided by the sinusoidal 

functions [3], the unknown coefficients could be determined for each order of n. 

5.3. Scattered and refracted wave fields for a tunnel 

5.3.1. Scattered wave field induced by an incident plane harmonic waves  

The analysis of wave motion considering a tunnel of infinite extent with an elastic 

lining of arbitrary thickness laid in an infinite elastic medium, which is treated as an 
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elastic hollow circular cylinder, can be carried out in a completely analogous manner. If 

the elastic constants and the density of the medium λmed, μmed, and ρmed are different from 

those of the tunnel lining (λlin, μlin, and ρlin), for an incident plane P- or an incident S-wave 

there are still two reflected waves, as in the previuosly considered case of a cavity, 

expressed in terms of the corresponding potentials:  

𝜑𝑠𝑐𝑎𝑡(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑝𝑚𝑒𝑑
𝑧−𝜔𝑡) ∑ 𝐴𝑛(𝜔) 𝐻𝑛

(1)(𝛼𝑚𝑒𝑑𝑟) ei𝑛𝜃

∞

𝑛=−∞

                   (41) 

𝜓𝑠𝑐𝑎𝑡(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑠𝑚𝑒𝑑
𝑧−𝜔𝑡) ∑ 𝐵𝑛(𝜔) 𝐻𝑛

(1)(𝛽𝑚𝑒𝑑𝑟) ei𝑛𝜃

∞

𝑛=−∞

                    (42) 

𝜒𝑠𝑐𝑎𝑡(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑠𝑚𝑒𝑑
𝑧−𝜔𝑡) ∑ 𝐶𝑛(𝜔) 𝐻𝑛

(1)(𝛽𝑚𝑒𝑑𝑟) ei𝑛𝜃

∞

𝑛=−∞

                    (43) 

5.3.2. Refracted wave field in the tunnel lining  

If the refracted waves are considered as propagating waves [2, 7, 8] there are two 

refracted waves that propagate outwards from the inner boundary of the liner and two 

refracted waves that propagate towards the inside of the liner from its outer boundary. 

Therefore, there will be two inward propagating waves and two outward propagating 

waves, and then the total displacement potentials in the tunnel lining are: 

𝜑𝑟𝑒𝑓(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑝𝑙𝑖𝑛
𝑧−𝜔𝑡) ∑ [𝐷𝑛(𝜔) 𝐻𝑛

(1)(𝛼𝑙𝑖𝑛𝑟) + 𝐸𝑛(𝜔) 𝐻𝑛
(2)(𝛼𝑙𝑖𝑛𝑟)]ei𝑛𝜃

∞

𝑛=−∞

 (44) 

𝜓𝑟𝑒𝑓(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑠𝑙𝑖𝑛
𝑧−𝜔𝑡) ∑ [𝐹𝑛(𝜔) 𝐻𝑛

(1)(𝛽𝑙𝑖𝑛𝑟) + 𝐺𝑛(𝜔) 𝐻𝑛
(2)(𝛽𝑙𝑖𝑛𝑟)]ei𝑛𝜃

∞

𝑛=−∞

  (45) 

𝜒𝑟𝑒𝑓(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑠𝑙𝑖𝑛
𝑧−𝜔𝑡) ∑ [𝐿𝑛(𝜔) 𝐻𝑛

(1)(𝛽𝑙𝑖𝑛𝑟) + 𝑀𝑛(𝜔) 𝐻𝑛
(2)(𝛽𝑙𝑖𝑛𝑟)]ei𝑛𝜃

∞

𝑛=−∞

 (46) 

where the superscript “ref” stands for the refracted field. The Hn
(1) and Hn

(2) terms in the 

series represent the outward and inward propagating simple harmonic circular waves, 

respectively. 

Alternatively the four refracted waves in the liner might be thought as standing 

waves, that is, the waves being confined in the tunnel lining [3, 9]. In the solutions of the 

Bessel equations the cylindrical Bessel functions of the second kind have to be retained. 

Accordingly, the total displacement potentials in the tunnel lining are: 

𝜑𝑟𝑒𝑓(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑝𝑙𝑖𝑛
𝑧−𝜔𝑡) ∑ [𝐷𝑛(𝜔) 𝐽𝑛(𝛼𝑙𝑖𝑛𝑟) + 𝐸𝑛(𝜔) 𝑌𝑛(𝛼𝑙𝑖𝑛𝑟)] ei𝑛𝜃

∞

𝑛=−∞

 (47) 

𝜓𝑟𝑒𝑓(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑠𝑙𝑖𝑛
𝑧−𝜔𝑡) ∑ [𝐹𝑛(𝜔) 𝐽𝑛(𝛽𝑙𝑖𝑛𝑟) + 𝐺𝑛(𝜔) 𝑌𝑛(𝛽𝑙𝑖𝑛𝑟)] ei𝑛𝜃

∞

𝑛=−∞

    (48) 
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𝜒𝑟𝑒𝑓(𝑟, 𝜃, 𝑧, 𝑡) = ei(𝛾𝑠𝑙𝑖𝑛
𝑧−𝜔𝑡) ∑ [𝐿𝑛(𝜔) 𝐽𝑛(𝛽𝑙𝑖𝑛𝑟) + 𝑀𝑛(𝜔) 𝑌𝑛(𝛽𝑙𝑖𝑛𝑟)] ei𝑛𝜃

∞

𝑛=−∞

  (49) 

Both variants have been tried in the study [10]. The trials have revealed that if the 

refracted waves are represented in terms of propagating waves, a solution will fail in 

obeying the corresponding boundary conditions at the tunnel–ground interface, in 

particular for the case of a stiff liner in a soft rock. Moreover, the convergence of the 

solution based on this representation of refracted seismic waves has not been 

accomplished with respect to the case of two structures in close proximity. According to 

these conslusions, in derivation of the solution, the representation of refracted waves in 

terms of standing waves has been employed. In the author’s opinion, this representation 

is more realistic, since it is rather difficult to trace the refraction of waves across a lining 

with thickness of finite dimension;  so that,  transmitted waves are considered to be 

reflected back and forth between the two surfaces, thus resulting in a standing wave 

across the tunnel lining cross-section. 

5.3.3. Total wave fields in the surrounding medium and the tunnel lining  

Considering the medium, the resultant waves are determined by superposing the 

incident and the reflected waves, whereas the refracted waves are the only ones in the 

tunnel lining. 

Hence, for the case of an incident P-wave, the total wave outside the cylinder is 

given by: 

{

𝜑𝑚𝑒𝑑 = 𝜑𝑖𝑛𝑐 + 𝜑𝑠𝑐𝑎𝑡

𝜓𝑚𝑒𝑑 = 𝜓𝑠𝑐𝑎𝑡

𝜒𝑚𝑒𝑑 = 𝜒𝑠𝑐𝑎𝑡

                                                 (50) 

whereas for the case of an incident S-wave, the total wave field in the surrounding 

medium is: 

{

𝜑𝑚𝑒𝑑 = 𝜑𝑠𝑐𝑎𝑡

𝜓𝑚𝑒𝑑 = 𝜓𝑖𝑛𝑐 + 𝜓𝑠𝑐𝑎𝑡

𝜒𝑚𝑒𝑑 = 𝜒𝑖𝑛𝑐 + 𝜒𝑠𝑐𝑎𝑡

                                                (51) 

 On the other hand, the total wave field inside the tunnel lining, both for the case of 

an incident P-wave and the case of an incident S-wave, will be: 

{

𝜑𝑙𝑖𝑛 = 𝜑𝑟𝑒𝑓

𝜓𝑙𝑖𝑛 = 𝜓𝑟𝑒𝑓

𝜒𝑙𝑖𝑛 = 𝜒𝑟𝑒𝑓

                                                        (52) 

5.3.4. Boundary conditions  

Considering the case of a tunnel structure, the resulting nine sets of unknown 

expansion coefficients in the above presented equations are comprised of three for the 

reflected waves and six for the refracted waves. To solve for these unknowns, 
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corresponding boundary conditions in terms of six equations at the outer radius r = b and 

three equations at the inner radius r = a should be used. 

Most of analytical and numerical models are based on the assumption that the contact 

between the lining and the surrounding medium is of perfect nature. Accordingly, the no-

slip boundary conditions at the lining–ground adjoining surface (r = b, 0 ≤ θ ≤ 2π) are 

continuity of the radial and the shear stresses and displacements across the interface for 

reasons of equilibrium: 

{

𝜎𝑟𝑟,𝑚𝑒𝑑
= 𝜎𝑟𝑟,𝑙𝑖𝑛

      𝑢𝑟,𝑚𝑒𝑑
= 𝑢𝑟,𝑙𝑖𝑛

 

𝜎𝑟𝜃,𝑚𝑒𝑑
= 𝜎𝑟𝜃,𝑙𝑖𝑛

     𝑢𝜃,𝑚𝑒𝑑
= 𝑢𝜃,𝑙𝑖𝑛

𝜎𝑟𝑧,𝑚𝑒𝑑
= 𝜎𝑟𝑧,𝑙𝑖𝑛

      𝑢𝑧,𝑚𝑒𝑑
= 𝑢𝑧,𝑙𝑖𝑛

         𝑟 = 𝑏                           (53) 

Considering the inner lining surface (r = a, 0 ≤ θ ≤ 2π), stress-free boundary 

conditions should be prescribed: 

{

𝜎𝑟𝑟,𝑙𝑖𝑛
= 0 

𝜎𝑟𝜃,𝑙𝑖𝑛
= 0

𝜎𝑟𝑧,𝑙𝑖𝑛
= 0

               𝑟 = 𝑎                                            (54) 

In many elastodynamic problems, however, the bond between the liner and the 

surrounding ground may be imperfect [11, 12].  

The spring model is one of the popular models for describing a wide range of contacts 

between the liner and surrounding ground, from perfect contact to disconnected media [8, 

9]. Using this concept, the general boundary conditions to be applied at the interface of 

the elastic tunnel lining and the surrounding medium are: 

{

𝜎𝑟𝑟,𝑚𝑒𝑑
= 𝜎𝑟𝑟,𝑙𝑖𝑛

          𝜎𝑟𝑟,𝑚𝑒𝑑
= 𝑘𝑟(𝑢𝑟,𝑚𝑒𝑑

− 𝑢𝑟,𝑙𝑖𝑛
) 

𝜎𝑟𝜃,𝑚𝑒𝑑
= 𝜎𝑟𝜃,𝑙𝑖𝑛

         𝜎𝑟𝑟,𝑚𝑒𝑑
= 𝑘𝜃(𝑢𝜃,𝑚𝑒𝑑

− 𝑢𝜃,𝑙𝑖𝑛
)

𝜎𝑟𝑧,𝑚𝑒𝑑
= 𝜎𝑟𝑧,𝑙𝑖𝑛

          𝜎𝑟𝑧,𝑚𝑒𝑑
= 𝑘𝑧(𝑢𝑧,𝑚𝑒𝑑

− 𝑢𝑧,𝑙𝑖𝑛
)

                     (55) 

where kr, kθ, and kz are radial, transverse, and axial stiffness (bonding) parameters per unit 

length, respectively.  

The values of these parameters are infinity, with the normal, tangential, and axial 

stresses being finite quantities, for the case of perfectly bonded interface (i.e., no-slip 

contact), in which case the normal, tangential, and axial stresses and displacements are 

continuous at the interface. When kr → ∞, kz → ∞, and kθ → 0, which implies that σrθ = 0, 

the full-slip condition (i.e., perfect slip with no friction) in r-θ (transverse) direction has 

been defined. The intermediate values of these parameters correspond to the imperfect 

contact (i.e., loose contact) in the given direction. In the case when all of the stiffness 

parameters tend to 0, and therefore, σrr → 0, σrθ → 0, and σzz → 0, implying that no waves 

are transmitted from the surrounding medium to the tunnel lining, the case equivalent to 

the case of a tunnel without liner (cavity) applies.  

Based on Eqs. (50)–(52), consequently, the stresses in the medium will depend on 

incident and scattered wave potentials, whereas the stresses in the cylinder are 

contributed by refracted waves only. 
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Using the equations for the stresses and displacements (see Appendix), with the 

proper cylindrical functions, the unknown scattering and transmission coefficients can be 

determined by simultaneous algebraic equations. 

6. TRANSLATIONAL ADDITION THEOREMS FOR CYLINDRICAL WAVE FUNCTIONS 

In many difrraction and scattering problems, waves of one characteristic shape 

(coordinate system) that are incident upon a boundary of some other shape (coordinate 

system) need to be considered. In such cases, it is difficult to satisfy boundary conditions 

on that surface. Namely, Bessel functions are not algebraic functions, and they are not 

simply periodic functions, and particularly, that they are not doubly periodic functions. 

Consequently, it is not possible to express Jn (kri + krj) as an algebraic function of Jn (kri) 

and Jn (krj). That is to say, that Bessel functions do not possess addition theorems in the 

strict sense of the term [5]. 

Nevertheless, a class of mathematical relationships called wave transformations 

(translational addition theorems for bi-cylindrical coordinates) exists, which overcomes 

this difficulty in many cases by allowing the fields scattered by the various interfaces to 

be studied, all referred to a common origin.  

Fig. 9 illustrates two systems of Cartesian rectangular coordinates O1, x1, y1 and O2, 

x2, y2 with identically oriented and parallel respective axes, and the polar coordinate 

systems r1, θ1 and r2, θ2 related to them by the corresponding conversion formulas. The 

point P of the plane xOy is an arbitrary point. 

 

 

 

 

 

 

 

 

Fig. 9 Addition theorem for cylindrical wave function (reproduced after [6]). 
 

The addition theorems are of the following form [6]: 

𝐽𝑛(𝑘𝑟𝑖) ei𝑛𝜃𝑖 = ∑ 𝐽𝑛−𝑚(𝑘𝑑) 𝐽𝑚(𝑘𝑟𝑗) ei(𝑛−𝑚)𝜃𝑖𝑗+i𝑚𝜃𝑗

∞

𝑚=−∞

                       𝑑 ≷ 𝑟𝑗           (56) 

𝐻𝑛
(1),(2)(𝑘𝑟𝑖) ei𝑛𝜃𝑖 = ∑ 𝐻𝑛−𝑚

(1),(2)(𝑘𝑑) 𝐽𝑚(𝑘𝑟𝑗) ei(𝑛−𝑚)𝜃𝑖𝑗+i𝑚𝜃𝑗

∞

𝑚=−∞

           𝑑 > 𝑟𝑗          (57) 

𝐻𝑛
(1),(2)(𝑘𝑟𝑖) ei𝑛𝜃𝑖 = ∑ 𝐻𝑛−𝑚

(1),(2)
(𝑘𝑟𝑗) 𝐽𝑚(𝑘𝑑) ei(𝑛−𝑚)𝜃𝑗+i𝑚𝜃𝑖𝑗

∞

𝑚=−∞

          𝑑 < 𝑟𝑗          (58) 
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in which θij (i, j = 1, 2, i ≠ j) is angle between the OjOi line and the xi-axis, and d is the 

distance between two neighbouring structures. 

With the above relationships between d and rj, all the presented expansions converge 

absolutely and uniformly. 

Formulae in Eqs. (56)–(58) allow each Bessel or Hankel wave function written in an 

i-th system of coordinates (i = 1 or i = 2) to be expressed  through  the same wave 

functions, but written in another, the j-th system of coordinates (j ≠ i; j = 2 or j = 1).  

These formulas play a significant role in the problems of scattering of waves on 

several circular cylinders. By using them, the dynamic interaction between closely spaced 

structures is fully taken into consideration. The appropriate relationship to be used, in 

order to determine unknown scattering coefficients, would be the equation for which the 

condition that the bodies are not tangent to one another is satisfied (i.e., ri < d). 

7. SUMMARY AND CONCLUDING REMARKS 

Tunnels are crucial facilities in transportation network, and occurrence of a seismic 

event can cause a loss of human lives and damage to the infrastructures. It could severely 

influence the rescue and repair work after earthquake directly due to intermission of the 

transportation network and affect the economy of a region due to the time required to 

restore the functionality of the network. In addition, there is a lack of systematic and 

precisely established seismic design rules for tunnels that are of great importance [13]. 

Particularly the case of closely running tunnel structures should be turned into an 

important direction of further development of seismic design codes, where the aspect of 

their minimum seismically safe distance should be an issue of all concerns [10].  

If it is possible to establish a realistic constitutive model for material behaviour, 

identify the boundary conditions, and combine these with the equations of equilibrium 

and compatibility, an exact theoretical solution on the seismic response of tunnel 

structures can be obtained. A closed-form solution is the ultimate method of analysis, in 

which all solution requirements are satisfied and the theories of mathematics are used to 

obtain complete analytical expressions defining the full behaviour of the problem.  

The mathematical tool, presented in this work, completes the necessary background 

required for the exact analysis of the problem of seismic wave scattering and refraction 

on a circular cylindrical cavity or tunnel of infinite length, or the problem accompanying 

two closely located circular cylinders, embedded in a homogeneous, elastic, isotropic 

medium of infinite extent. Essential advantage of the exact analytical solution is in terms 

of better accuracy, thus offering the best benchmark for comparison with other solutions 

obtained by more conventional simplified asymptotic approaches or numerical methods.  

APPENDIX 

A.1. Displacement components in terms of displacement potentials 
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A.2. Stress components in terms of displacement potentials 
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MATEMATIČKA INTERPRETACIJA RASIPANJA I 

REFRAKCIJE SEIZMIČKIH TALASA U PRISUSTVU 

TUNELSKIH OBJEKATA KRUŽNOG POPREČNOG PRESEKA  

U fokusu ovog rada je interpretacija difrakcije i rasipanja seizmičkih talasa u polarno-

cilindričnim koordinatama primenom odgovarajućeg matematičkog aparata. U radu je najpre dat 

pregled nekih od najznačajnijih svojstava cilindričnih Bessel-ovih funkcija, koje su podesne za 

matematičko opisivanje problema difrakcije i rasipanja seizmičkih talasa. Takođe, dat je prikaz 

jednačina koje predstavljaju osnovu tzv. metode ekspanzije talasnih funkcija (wave function 

expansion), u polarno-cilindričnim koordinatama i za slučaj seizmičkih talasa sa ravnim frontom. 

Prikazana su i rešenja primenom metode ekspanzije talasnih funkcija za slučaj nepodgrađenog 

tunelskog otvora i slučaj podgrađenog tunelskog objekta, sa aspekta fenomena rasipanja i 

refrakcije seizmičkih talasa, pod uticajem incidentnih harmonijskih P-talasa i S-talasa sa ravnim 

frontom. Na kraju rada prezentovane su i teoreme translatornog sabiranja (translational addition 

theorems), koje imaju važnu ulogu u matematičkom rešavanju problema difrakcije i rasipanja 

seizmičkih talasa u prisustvu dva blisko položena tunelska objekta. 

Ključne reči: kružni tunel, seizmički talasi, rasipanje, refrakcija, Fourier–Bessel-ovi redovi 


