Suresh Kumar Walia, Raj Kumar Patel, Hemant Kumar Vinayak, Raman Parti

DOI Number
First page
Last page


In the present article the work is carried out on scaled modeled bridge for condition assessment due to seeded damage. The objective is to find the location of damage in the steel bridge using vibration signal. For the differentiation between damage and intact condition, time, frequency domain analysis has been used. Power spectral density has been applied to the vibration signal to extract the mode shapes and compare between healthy and damage state of the modeled. Further, Short Time Fourier Transform gives the 3D visualization of amplification in different mode of vibration which helps to identify the damage location. Using nodal energy approach, Wavelet Packet Transform has been used to determine the location of damage, which is superior than the frequency and time domain analysis parameters.


Steel truss bridge, Time domain analysis, power spectral density, Short Time Fourier Transform, Wavelet Packet Transform

Full Text:



P. Moyo and J. Brownjohn, “Bridge health monitoring using wavelet analysis,” Proceedings of SPIE 4317, 2nd International Conference on Experimental Mechanics. doi:10.1117/12.429636

A. A. Fatemi and M. H. A. Beigi, “Steel bridges retrofitting techniques,” Int. J. Earth Sci. Eng., vol. 04, no. 06, pp. 695–698, 2011.

A. Hera and Z. Hou, “Application of wavelet approach for ASCE structural health monitoring benchmark studies,” J. Eng. Mech., vol. 130, no. 1, pp. 96–104, 2004. DOI: 10.1061/(ASCE)0733-9399(2004)130:1(96)

A. Alvandi, J. Bastien, C. Cremona, and M. Jolin, “Bridge Condition Evaluation by In Situ Dynamic Data,” Open Acoust. J., vol. 1, no. 1, pp. 54–65, Sep. 2008. 10.2174/1874837600801010054.

B. Graybeal and B. Phares, “Visual inspection of highway bridges,” J. Nondestruct. Eval., vol. 21, no. 3, pp. 67–83, 2002. DOI: 0195-9298/02/0900-0067/0

L. Frýba and M. Pirner, “Load tests and modal analysis of bridges,” Eng. Struct., vol. 23, pp. 102–109, 2001. DOI: S0141-0296(00)00026-2

M.-H. Hu, S.-T. Tu, F.-Z. Xuan, C.-M. Xia, and H.-H. Shao, “Strain energy numerical technique for structural damage detection,” Appl. Math. Comput., vol. 219, no. 5, pp. 2424–2431, Nov. 2012.doi: 10.1016/j.amc.2012.08.078

Z. Gao and X. Chen, “Structure Data Processing and Damage Identification Based on Wavelet and Artificial Neural Network,” Res. J. Appl. Sci. Eng. Technol., vol. 3, no. 10, pp. 1203–1208, 2011.

Z. Sun and C. C. Chang, “Statistical wavelet-based method for structural health monitoring,” J. Struct. Eng., vol. 130, no. 7, pp. 1055–1062, 2004. doi: 10.1061/(ASCE)0733-9445(2004)130:7(1055)

S. K. Walia, R. K. Patel, H. K. Vinayak, and R. Parti, “Time–frequency and wavelet-based study of an old steel truss bridge before and after retrofitting,” J. Civ. Struct. Heal. Monit., vol. 5, no. 4, pp. 397–414, 2015. doi: DOI 10.1007/s13349-015-0116-9

S. K. Walia, R. Patel, H. K. Vinayak, and R. Parti, “Joint discrepancy evaluation of an existing steel bridge using time-frequency and wavelet-based approach,” Int. J. Adv. Struct. Eng., vol. 5, no. 1, pp. 5–25, Oct. 2013.doi: 10.1186/2008-6695-5-25

H. Kim and H. Melhem, “Damage detection of structures by wavelet analysis,” Eng. Struct., vol. 26, no. 3, pp. 347–362, Feb. 2004. doi:10.1016/j.engstruct.2003.10.008

D. Hester and a. González, “A wavelet-based damage detection algorithm based on bridge acceleration response to a vehicle,” Mech. Syst. Signal Process., vol. 28, pp. 145–166, Apr. 2012. DOI.10.1016/j.ymssp.2011.06.007

P. Gu, “A New Signal Processing Method Based on Intrinsic Frequency,” 19th Analysis & Computation Specialty Conference, 2010, pp. 179–200, May 2010.

L. Qiao, “Structural damage detection using signal-based pattern recognition,” 2009.

L. Yu and V. Giurgiutiu, “Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors,” Smart Struct. Syst., vol. 1, no. 2, pp. 185–215, Apr. 2005 DOI:10.12989/sss.2005.1.2.185.

C.-Y. Kim, D.-S. Jung, N.-S. Kim, S.-D. Kwon, and M. Q. Feng, “Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration,” Earthq. Eng. Eng. Vib., vol. 2, no. 1, pp. 109–115, Jun. 2003, DOI:10.1007/BF02857543.

W. J. Staszewski and A. N. Robertson, “Time-frequency and time-scale analyses for structural health monitoring.,” Philos. Trans. A. Math. Phys. Eng. Sci., vol. 365, no. 1851, pp. 449–77, Feb. 2007,DOI: 10.1098/rsta.2006.1936.

M. R. Hamtaei, S. A. Anvar, and M. Farrokhrooz, “Application of time-frequency transform techniques for estimation of natural frequencies of mdof systems,” in International Conference on Earthquake Engineering and Disaster Mitigation, Jakarta, April 14-15, 2008, 2008, pp. 690–729.

J. Lardies and S. Gouttebroze, “Identification of modal parameters using the wavelet transform,” Int. J. Mech. Sci., vol. 44, no. 11, pp. 2263–2283, Nov. 2002, DOI:10.1016/S0020-7403(02)00175-3.

“SAP2000 (2006) Structural analysis program 10.0.5. Computers and Structures.” Inc. Berkeley, CA., 2006.

K. H. Hsieh, M. W. Halling, and P. J. Barr, “Overview of vibrational structural health monitoring with representative case studies,” J. Bridg. Eng., vol. 11, no. 6, pp. 707–715, 2006, DOI: 10.1061/(ASCE)1084-0702(2006)11:6(707) CE.

M. Picozzi, C. Milkereit, C. Zulfikar, K. Fleming, R. Ditommaso, M. Erdik, J. Zschau, J. Fischer, E. Şafak, O. Özel, and N. Apaydin, “Wireless technologies for the monitoring of strategic civil infrastructures: An ambient vibration test on the Fatih Sultan Mehmet Suspension Bridge in Istanbul, Turkey,” Bull. Earthq. Eng., vol. 8, no. 3, pp. 671–691, 2010.

MATLAB, “User manual version 7.2 The math works, Inc. Natick, MA, US.” 2006.

A. Rother, M. Jelali, and D. Söffker, “A brief review and a first application of time-frequency-based analysis methods for monitoring of strip rolling mills,” J. Process Control, vol. 35, pp. 65–79, Nov. 2015, DOI:10.1016/j.jprocont.2015.08.010.

W. Caesarendra, B. Kosasih, A. K. Tieu, and C. A. S. Moodie, “Circular domain features based condition monitoring for low speed slewing bearing,” Mech. Syst. Signal Process., vol. 45, no. 1, pp. 114–138, Mar. 2014, DOI:10.1016/j.ymssp.2013.10.021.

F. Serdio, E. Lughofer, K. Pichler, T. Buchegger, M. Pichler, and H. Efendic, “Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations,” Inf. Fusion, vol. 20, pp. 272–291, Nov. 2014, DOI:10.1016/j.inffus.2014.03.006.

J. T. Kim, J. H. Park, and B. J. Lee, “Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions,” Eng. Struct., vol. 29, no. 7, pp. 1354–1365, 2007, DOI:10.1016/j.engstruct.2006.07.024.

H. Sohn, J. Czarnecki, and C. Farrar, “Structural health monitoring using statistical process control,” Struct. Eng., vol. 126, no. November, pp. 1356–1363, 2000,doi: 0733-9445/00/0011-1356– 1363.

H. Humar, J. L., Bagchi, A., and Xu, “Challenges in vibration-based structural health monitoring,” in Proceedings of Structural Health Monitoring and Intelligent infrastructures (SHMII-1, 2003), Tokyo, Japan, November 13 - 15, 2003, pp. 503–512.

M. Schulze and T. Sattelmayer, “A comparison of time and frequency domain descriptions of high frequency acoustics in rocket engines with focus on dome coupling,” Aerosp. Sci. Technol., vol. 45, pp. 165–173, 2015, doi:10.1016/j.ast.2015.05.007.

A. Choubey, D. K. Sehgal, and N. Tandon, “Finite element analysis of vessels to study changes in natural frequencies due to cracks,” Int. J. Press. Vessel. Pip., vol. 83, pp. 181–187, 2006, DOI:10.1016/j.ijpvp.2006.01.001.

S. R. Anton, “Baseline-Free and Self-Powered Structural Health Monitoring by Baseline-Free and Self-Powered Structural Health Monitoring,Phd Thesis” 2008.

H. R. Gupta, “Power Spectrum Estimation using Welch Method for various Window Techniques,” vol. 2, no. 6, pp. 389–392, 2013.

A. Dutta and S. Talukdar, “Damage detection in bridges using accurate modal parameters,” Finite Elem. Anal. Des., vol. 40, no. 3, pp. 287–304, Jan. 2004,DOI: 10.1016/S0168-874X(02)00227-5.

B. Isayed, L. Cheded, and F. Al-Badour, “Vibration monitoring and faults detection using wavelet techniques,” 2007 9th Int. Symp. Signal Process. Its Appl., pp. 1–4, Feb. 2007,doi: 10.1109/ISSPA.2007.4555438.

S. S. Law, X. Y. Li, X. Q. Zhu, and S. L. Chan, “Structural damage detection from wavelet packet sensitivity,” Eng. Struct., vol. 27, no. 9, pp. 1339–1348, Aug. 2005,DOI: 10.1016/j.engstruct.2005.03.014.

S. J. CUI Fei, YUAN Wan-cheng, “Damage Detection of Structures Based on Static Response,” J. Tongji Univ. (Natural Sci., vol. 28, pp. 5–8, 2000.

H.-X. Zhen, D.-L., Li, Z.-F., Hua, “A Summary Review of Structural Initial Damage Identification Methods,” J. Vib. Shock, vol. 21, pp. 1–6, 2002.

Y.-Q. Wang, B.-S., Ding, H.-J., Ni, “Influence of Modeling Errors on Input Vectors to Neural Networks for Damage Identification,” China Civ. Eng. J., vol. 33, pp. 50–55, 2000.

E. Figueiredo, G. Park, J. Figueiras, C. Farrar, and K. Worden, “Structural health monitoring algorithm comparisons using standard data sets,” 2009.

S. Seker and E. Ayaz, “Feature extraction related to bearing damage in electric motors by wavelet analysis,” J. Franklin Inst., vol. 340, no. 2, pp. 125–134, Mar. 2003,doi:.

Chendeb M, Khalil M, Duche ˆne J., “Signal Methodology of wavelet packet selection for event detection,” Signal Processing, vol. 86, no. 12, pp. 3826–3841, 2006.

M. A. Lotfollahi-Yaghin and M. Koohdaragh, “Examining the function of wavelet packet transform (WPT) and continues wavelet transform (CWT) in recognizing the crack specification,” KSCE J. Civ. Eng., vol. 15, no. 3, pp. 497–506, Mar. 2011, DOI:10.1007/s12205-011-0925-2.


  • There are currently no refbacks.

ISSN 0354-4605 (Print)
ISSN 2406-0860 (Online)
COBISS.SR-ID 98807559