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Abstract. The experiment investigated the performance of an artificial neural network 

in solving the inverse kinematic problem of a soft robot. For this purpose, a simple soft 

robot was designed of building blocks, stringed on three rubber hoses, and an actuating 

system, to provide the hydraulic pressure. An axial extending of a hose, while the others 

are in the relaxed state, results in bending of the robot. The network was employed, as 

a black box, to approximate the behavior of the system. In accordance with the 

purpose, the input consisted of the desired spatial coordinates and the output of the step 

motor angular displacements. The network was trained and tested using records 

collected at 200 randomly chosen robot positions. The relative testing error of 

positioning, about 5%, confirmed a predictable robot behavior. The solution proposed 

is competitive in terms of simplicity, safety and price of realization. The experiment 

provided basics for the future research of the design of modular soft robots. 
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1. INTRODUCTION 

Nowadays, robots are widely present, especially in manufacturing, because of their 

ability to perform plenty of different tasks in a more accurate and efficient way than 

humans. However, the extensive robotic practice revealed some of their shortcomings 

too, like limited adaptability and insufficient safety. Conventional robots are rigid, which 

makes them dangerous in interaction with humans and other living creatures. In such a 

scenario, human and robotic moving zones have to be separated explicitly in order to 

provide a safe working environment. As the time passes, robots take over more and more 
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activities from humans. The range of their application spreads from production to other 

areas of human activity and demands for the interaction with humans constantly grow. In 

order to bridge the gap between robots and humans engineers turn to construction of soft 

robotic systems. Representative examples of these are presented in Fig. 1. The first image 

(a) shows a vine-like robot developed by the Stanford University. It works on the 

principle of inversion and accomplishes a friction-independent movement. The robot can 

move, easily, trough caves, ruins, interiors of living creatures and other restricted and 

unpredictable spaces. It is ideal for diagnostics, resolving failures, delivery of goods and 

assistance under extremely limited conditions [2]. The second image (b) presents the first 

functional soft robot powered entirely by vacuum, developed by the École Polytechnique 

Fédérale De Lausanne. It moves by having air sucked out of it. Thanks to the modularity, the 

robot can be easily reconfigured to perform different tasks such as climbing vertical walls and 

grabbing objects [3]. A team of engineers, at the University of California San Diego created a 

soft robot that can walk on sand, pebbles, rocks and up inclines (c). It moves using four 

hollow limbs which are pumped full of air. The limbs are much lighter and more 

maneuverable than standard limbs made of rigid structures [4]. The last image, (d), presents a 

platform for creating soft robots developed by the Harvard John A. Paulson School of 

Engineering and Applied Sciences. It is equipped with sensors for registering movement, 

pressure, touch and temperature [5]. The platform enables complex sensing motifs to be easily 

integrated into soft robotic systems. Inspired by the structure of biological organisms, all of 

the robots presented are made of soft elements which are able to bend and twist with a high 

curvature. Using this fact, soft robots can be defined as systems with autonomous behavior 

primarily composed of the materials with tensile modulus of elasticity in the range of the soft 

biological materials (10
4
-10

9
Pa) (Fig. 2). The soft structure makes them continuously 

deformable with the theoretically infinite degrees of freedom [6]. They can adapt their shape 

to confined spaces (engines, mechanisms, interior of buildings, caves, pipe lines, human and 

animal body cavities, etc.). In such surroundings, soft robots exceed the performance of 

conventional robotic systems, made of rigid materials. One of the greatest advantages of the 

soft construction is that these robots are harmless in contact with humans, other living 

creatures and other sensitive objects. 

 

Fig. 1 Soft robot examples  

https://www.engadget.com/2017/05/18/soft-robot-rescue-missions/
https://www.engadget.com/2017/05/18/soft-robot-rescue-missions/
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The basic challenge in making a predictable robotic system is determining the 

mathematical model. Calculating kinematic parameters (position, orientation, velocity and 

acceleration) of the effector, on the basis of joint positions, is called the direct kinematic 

problem. In the standard robotics, it is a trivial, straightforward problem which always has a 

solution. Inverse kinematics implies determining joint parameters that provide a desired 

spatial position of the effector. It is a much more difficult and computationally expensive 

problem, accompanied by nonlinearities, singularities, redundancy and collision avoidance. 

Only a small percent of manipulators have a unique analytical solution [7]. If the kinematic 

parameters are known, dynamic equations are used to link them with the forces. Thus, a 

direct dynamic is calculation of accelerations caused by applied forces and an inverse 

dynamic is calculation of forces needed to provide a desired acceleration. The first 

procedure is used in simulation and the second in control algorithms. Soft robot modeling is 

even more complex, because of the absence of rigid joints and links. The concept of soft 

robot is relatively new but previous experience revealed control algorithms [7-11] which are 

similar to conventional ones, intended for rigid robots. These are obtained by involving the 

principle of piecewise constant curvature [1, 6-11]. It implies that each body segment of a 

multi-segment robot deforms with a constant curvature. Under this assumption, N-link soft 

manipulator can be determined uniquely by 2N joint variables. A common practice is 

dividing a mathematical model into two separate sub mappings [12]. The first is universal, 

applicable to soft robots generally, and the second is robot-specific. Another way of soft 

robot modeling is the discrete Cosserat approach based on the micropolar elasticity [6]. The 

model incorporates a local rotation of points as well as the translation assumed in the 

classical elasticity. It inherits the geometrical and mechanical properties of the continuous 

Cosserat model, making the natural soft robotics a counterpart of the traditional rigid 

robotics. In the lack of analytical solutions, an accurate model can be obtained using 

numerical methods [13-15], such as the Finite Element method [16-17]. These methods 

perform the feedforward control of robot using an inverse optimal model. In his research 

[18], Zhang extended the method to the real-time closed-loop control. However, the 

solutions employ a quasi-static model, which limits the control to low velocity trajectories. 

There are even some on-line software frameworks published, based on the numerical 

techniques, intended for the simulation of soft robots [13-14]. 

 

Fig. 2 Tensile modulus (Young’s modulus) of engineering and biological materials [1] 

The research suggested a universal method of soft robot control using artificial neural 

network. The procedure is well established in the conventional robotics [19-22]. Neural 

networks are proven approximators distinguished by simple implementation and 

excellent speed of performance [23]. They are employed as a black box, which means 

that a certain input produces a desired output, but how the network achieves the result is 

left to a self-organizing (artificial intelligence) algorithm [24]. The last property makes 
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them suitable for a broad range of users, who are not necessarily familiar with the control 

theory, robotics or mechanics at all. The purpose of the experiment was to prove that an 

artificial neural network can be trained to perform a predictable soft robot control by 

approximating the inverse kinematic problem. 

2. METHOD 

The experiment was performed with the simple soft robot design (a) assembled of 

building blocks. The building block (b) is constructed of three, identical, conveniently 

shaped and radially disposed, hollow cylinders and a coupling element in the centre. The 

cylinder hole fits the diameter of a rubber hose, in the all images marked with black. The 

construction was obtained by stringing 15 identical building blocks (b) on the three 

rubber hoses. One end of the each hose was sealed with a cup and the other was used for 

the hydraulic power supply. The cross section of the construction, in the relaxed state, is 

presented in the image (c) and the same cross section in the pressurized state in the image 

(d). From the last, it is obvious how the robot works. Expanding one hose, while the 

opposite is in relaxed state, results in bending of the whole structure. 

 

Fig. 3 Soft robot: a) design, b) building block, c) cross section – relax state, d) cross section – 

tense state 

There are two functional zones on the rubber hose surface. One, where the hose 

touches the walls of the building block, can be considered as a passive zone. In this zone, 

any radial expanding is absolutely prevented by the block geometry and an axial 

expanding is suppressed by the friction force. Out of the passive zone, the hose is 

spreading unhindered, if interior elastic forces are ignored. As a consequence of 

spreading, one hose becomes longer than the other (d) which causes the overall 

construction to bend to the opposite side, with respect to the center of symmetry. An 

additional modeling problem is that the zones are not constant. As the pressure increases, 
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from the zero state, the contact surface between the hose and walls of the building block 

is spreading. It happens until the entire hollow is filled totally with the rubber hose. It can 

be designated as a charging pressure. The behavior of the free hose with respect to the 

pressure is not easy to predict. It depends on hydraulic forces, elastic forces and the block 

geometry. The other point of interest is the pressure level when the gap between building 

blocks start to appear. This pressure can be named an activating pressure. The element 

can be considered as inactive until it reaches the activation pressure. The activation 

pressure cannot be higher than the charging pressure and it depends on the same 

parameters. The existence of different working regimes implies huge nonlinearities in the 

mathematical model of the soft robot. 

 

Fig. 4 Soft robot and electro-hydraulic actuator 

The robot was pressurized using an electro-hydraulic system, presented by the block 

diagram on the Fig. 4. The actuating system was designed of three identical lines, each of 

them intended for supplying one rubber hose of the soft robot. At the beginning of the line, 

the mechanical input was achieved by a step motor, with the angular displacement, . The 

motor was controlled using the A4988 CNC driver and the driver was governed by a PC 

through the USB connection with the AT- mega328P microcontroller. A time belt drive was 

employed to multiply the step motor torque. The transfer function, G1, of the time belt 

drive, was defined as a ratio between the output angular movement, , and the input angular 

movement, . A thread (G2), at the input of hydraulic cylinder, had to transform the angular 

movement  to the linear displacement, s, of the piston. The cylinder was used to transform 

mechanical to hydraulic energy. Its transfer function was defined as the ratio between 

output volume, V, displaced by the hydraulic cylinder, and the input linear displacement, s. 

Finally, the soft robot, including pipelines, was observed as a multivariable system with 

three input and as many output variables. It was described by transfer matrix H with 3x3 

elements. The analysis of the working principle already revealed the existence of 

nonlinearities in this matrix. The input vector consisted of volumes (V1, V2 and V3) which 
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were displaced by hydraulic cylinders. The output variables (x, z, y) were spatial 

coordinates of the control mark, placed at the top of the soft robot. The whole system, 

consisting of actuating and executive organs, was represented by the transfer function [25]  
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The above transfer function describes the direct kinematic problem, in a general form. 

The transfer functions of the amplifiers, G1 G2 G3, are easy to be calculated, on the basis 

of geometric parameters, or determined using an identification procedure. However it is 

extremely complex to analytically model the transfer function H, because of the above 

mentioned nonlinearities.  

 

 

Fig. 5 An appearance of the employed soft robot 

In the experiment, analytical modeling was avoided completely by observing the whole 

system (Fig 4.) as a black box. Since the intention was to solve the inverse kinematic 

problem, a neural network was trained to approximate the inversion of the transfer function 

(1). The input was the robot position (x, y and z) and the output was the control signal made 

of angular displacements of the step motors that provide the position. For the training 

purpose approximately 200 control vectors were chosen randomly, each with the angular 

displacements between 0 and 60 revolutions. The values were determined experimentally, 

the first as a control level in the relaxation state and the second as the level that causes full 

bending (limited at 135 ). For each vector geometrical coordinates of the led diode, at the 

top of soft robot, was recorded by the total station Sokkia SET630R. The instrument allows 

laser measuring of distances with the accuracy of +/-3mm, at the used range of lengths, 

memorization and automatic data transfer through a RS-232 port. Actually, after several 

attempts the diode had to be colored opaque because the laser beam had passed through its 
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transparent body. The network was trained, on the basis of experimentally obtained records 

(Fig.6), using the back propagation algorithm with momentum. The results were evaluated 

for the range of different configurations and training parameters, in order to find an optimal 

solution. Both the training and the testing were performed by software designed for the 

purpose of the previous experiment [23]. 

Fig. 6 The first 30 positions of the soft robot recorded 

3. RESULTS 

The experiment started with the structure of a neural network. The size of the input layer 

was determined by the number of executive channels, in the soft robot construction, and the 

size of the output layer is determined by the number of space coordinates. In both cases it is 

three. At first, a single hidden layer neural network was examined with the number of 

hidden neurons within the range between 1 and 40. The resulting mean squared errors and 

their approximations, using two term exponential function, are presented in Fig. 7. The 

other parameters were fixed at the optimal values, obtained successive through the series of 

experimental cycles. Both errors decrease down to approximately 10 neurons and then start 

to rise. The consistency of the results is better for the lower numbers of neurons so the 

network with 12 neurons in a single hidden layer was adopted as an optimally configured 

neural network. Any attempt of employing a multi-layered neural network gave no 

improvements with respect to the results obtained using a single-layered neural network 

with the same number of neurons. 

The influence of training parameters on the accuracy of the positioning was tested for 

33x34 different, logarithmically distributed, combinations of values. The value of 

learning coefficient was in the range between 0.01 and 0.999, and the momentum factor, 

between 0 and 0.999. Experimental results and appropriate approximations, using the 

local linear regression model, are presented on the Fig.8, for the training error and Fig.9 

for the testing error. The errors were big and the results were inconsistent only for the 

small values of the training parameters. The optimal values were adopted at 0.6 for both, 
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learning coefficient and momentum factor. During the test, the rest of the parameters 

were fixed at the optimal values. 

 

Fig. 7 Mean squared errors with respect to the number of neurons in a single hidden layer 

 

Fig. 8 Mean squared training error with respect to the training parameters 
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Fig. 9 Mean squared testing error with respect to the training parameters 

 

The accuracy achieved in positioning with respect to the number of backpropagation 

epochs, in the logarithmic scale, was presented on the Fig. 10. It shows that training error 

decreases constantly with the number of epochs. The testing error decreases up to some 

value and then stagnates or even increases. Such a case is known as over-trained neural 

network [24]. The approximations were performed using two term exponential function. 

 

Fig. 10 Mean squared errors with respect to the number of training epochs 
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Fig. 11 Mean squared errors with respect to the number of training samples 

The dependency of the training and testing errors with respect to the number of training 

points, presented in Fig. 10, shows that the training error decreases and the testing error 

increases with respect to the number of training points. The consistency of the errors 

increases, naturally, with higher numbers of training points. However, after a certain 

number, despite involving more and more samples, improvement becomes negligible. So, 

an optimal number of training points is a compromise between the anticipated accuracy and 

available training resources. The approximations were performed, again, using a two term 

exponential function. 

After optimal parameters were chosen, the system was tested employing 15% of 

randomly chosen samples. These samples had not been used, previously, for the training 

of the neural network. In such a way the concern is avoided for all training positions to 

belong to the moving range of the robot. The soft robot achieved a mean absolute error 

around 48 mm in tracing of the given spatial positions. 

4. DISCUSSION 

The experiment confirmed that a feedforward neural network can be trained for 

solving the inverse kinematic problem of the soft robot. The mean absolute positioning 

error of 48 mm in comparison with the 1000 mm long moving zone gave the relative 

positioning error of about 5%. The error might seem too big, in comparison with the 

classic positioning systems, but it proved a predictable robot behavior. If the error is 

acceptable, from the standpoint of the robot function, the solution provides a high rate 

between performances achieved and utilized resources. The construction was designed, 

completely, of the most frequent and the most accessible materials. In such a way, the 

price of the realization was dramatically decreased. The control of the robot, by self-
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organizing algorithm, eliminated identification as a phase in the system modeling. Thus, 

it is acceptable even for the users who are not familiar with the classic robotic theory. The 

selection of soft materials for the robot construction is expected to provide good safety in 

the interaction with humans. 

The biggest drawback of the proposed solution is that it works for the constant dynamic 

conditions only. It can be adapted to the change of load only by renewing the training 

procedure using a new set of training data. So, the ultimate goal of further research should 

be designing a positioning control which is adaptable to the dynamic conditions. Such a 

system should be capable to collect information about the loads, using several sensors 

mostly placed at the robot body. The network should generate the control signal, by solving 

the inverse dynamic problem, on the basis of the desired coordinates and the current loads. 

Another solution for improving the positioning accuracy can be involvement of a closed-

loop control but it requires an efficient procedure for the determining robot position in real 

time. The increase of positioning error with the increase of training samples (Fig. 11) 

indicates that the error originates from the nonlinearities and redundancy in the robot 

behavior that cannot be approximated by a neural network. The research will be used as a 

model for further experiments with different constructions of modular soft robots. The 

experiments are expected to minimize deformities (nonlinearities, redundancy and 

singularities) in the robot behavior and consequently improve the positioning accuracy. 
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