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Abstract. This paper proposes a method for tackling the problem of scalable object 

instance detection in the presence of clutter and occlusions. It gathers together advantages 

in respect of the state-of-the-art object detection approaches, being at the same time able to 

scale favorably with the number of models, computationally efficient and suited to texture-

less objects as well. The proposed method has the following advantages: a) generality – it 

works for both texture-less and textured objects, b) scalability – it scales sub-linearly with 

the number of objects stored in the object database, and c) computational efficiency – it 

runs in near real-time. In contrast to the traditional affine-invariant detectors/descriptors 

which are local and not discriminative for texture-less objects, our method is based on line 

segments around which it computes semi-global descriptor by encoding gradient 

information in scale and rotation invariant manner. It relies on both texture and shape 

information and is, therefore, suited for both textured and texture-less objects. The 

descriptor is integrated into efficient object detection procedure which exploits the fact that 

the line segment determines scale, orientation and position of an object, by its two 

endpoints. This is used to construct several effective techniques for object hypotheses 

generation, scoring and multiple object reasoning; which are integrated in the proposed 

object detection procedure. Thanks to its ability to detect objects even if only one correct 

line match is found, our method allows detection of the objects under heavy clutter and 

occlusions. Extensive evaluation on several public benchmark datasets for texture-less and 

textured object detection, demonstrates its scalability and high effectiveness. 
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1. INTRODUCTION 

Object instance detection from RGB images is a widely studied problem in computer 

and robot vision. The advent of local keypoint detectors/descriptors such as SIFT [1] paved 

the way to the deployment of solutions able to reliably deal with this problem in case of 

highly textured objects. Computational efficiency has been successively addressed by 

techniques such as SURF [2], BRIEF [3] and ORB [4]. Nevertheless, one of the main 

limitations of such techniques is dealing with texture-less objects. These objects lack 

corners, blobs and local gradient information which are typically used for keypoint related 

detector and descriptors, which represents their major limitation when applied to texture-less 

objects. However, such objects are commonly present in many application scenarios, such as 

visual inspection, mobile visual search or robot guidance. While recent expansion of RGB-D 

sensors introduced an additional cue useful for the visual perception of texture-less objects [5, 

26], restrictions still remains for application of such devices in outdoor environments. 

Techniques specifically addressing the problem of texture-less object detection can be 

split into two main categories: template-based and line-based. Methods within the former 

category rely on template matching, where templates typically encode image gradient 

information [6, 7, 8]. The latter applies the feature detection and description paradigm 

specifically designed to embed the object shape using line segments [9, 10]. The main 

limitation of current template-based approaches is scalability with respect to the model 

database size, as well as their sensitivity to occlusions. Recently introduced line-based 

methods [9, 10] for detection of texture-less objects tackle scalability and occlusion issues, 

but cannot deal with textured objects, and shapes that are not naturally described by sets of 

straight lines. While significant amount of research has addressed each mentioned issue 

separately (texture-less objects, scalability, occlusion handling), addressing them 

simultaneously is still extremely challenging.  

The goal of our work is to develop a novel technique that can deal with both texture-

less as well as highly textured objects, tackling the issue of scalability with respect to the 

number of objects in the database. At the same time, we want our technique to be robust 

to typical nuisances such as noise, clutter and occlusion. To this end, we propose a 

method based on a novel descriptor - LineHOG, computed around pre-extracted line 

segments, having the characteristic of being highly distinctive even when the object 

surface lacks enough texture details (Fig. 1). The main concept behind the introduced 

descriptor is to encode spatially localized gradient information inside a patch defined by 

the location and orientation of the line segment. Being feature-based, it can be combined 

with efficient approximate nearest neighbor (ANN) indexing schemes, which yields 

logarithmic complexity with respect to the number of models in the object library. This 

descriptor is integrated in our efficient object detection procedure, specifically adopted to 

exploit the properties of line segments. We proposed several efficient techniques for 

homography estimation, inlier detection and matching, and multiple object reasoning; 

which are shown to significantly improve the overall detection accuracy. 
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Fig. 1 Example of three correctly detected object instances in presence of clutter and 

occlusion, using the proposed LineHOG method. Extracted line segments are shown 

in red. 

We evaluated our method in terms of its applicability to the presented issues, with a 

special emphasis on texture-less object detection in challenging environments. 

Experiments over several benchmark datasets for texture-less and textured object 

detection demonstrate the state-of-the art performance, showing particular characteristics 

in terms of robustness towards clutter and occlusion. 

2. RELATED WORK  

There is a large number of research papers primarily considering textured object 

detection [1, 14, 15]. By contrast, only a limited amount of works is focusing on texture-less 

object detection. Since literature review of textured object detection exceeds the scope of 

this paper, we will focus only on related works for texture-less object detection. Detection 

of texture-less objects has just recently been addressed in [6-13]. The approaches to texture-

less object detection can be divided into two broad categories: template-based and line-

based. 

Template-based methods for texture-less object detection. These methods associate an 

object of interest with a large number of templates, each encoding the appearance of the 

object as seen from a different viewpoint. The object of interest is detected in the image 

using a sliding window approach. The state-of-the-art in template-based methods is LINE-

2D [12], which represents templates as binary strings using quantized gradient information. 

An extension has been proposed in [6], where, in addition to image gradients, surface 

normals are used in the similar way. The method demonstrated an impressive accuracy in 

extremely cluttered conditions, although several issues still remain: scalability, which is 

linear with the number of templates in the database, and sensitivity to occlusions. 

The authors of [8] proposed to extend [6] by learning discriminative templates in just a 

few milliseconds, so to speed up detection by means of a cascaded classification scheme. 

Recently, a method appeared [13] proposing to tackle the occlusion handling limitation of 

[6] by means of a specific occlusion reasoning model which exploits prior knowledge to 
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estimate the statistics of the object portions appearing in a given environment. They 

demonstrate a significant performance improvement on a challenging occlusion dataset, but 

still without considering the scalability issue. A two-stage cascaded detection method is 

proposed in [11] for improved speed performance. The first stage prunes a vast majority of 

sliding windows, while the second stage uses the improved oriented chamfer score [16] for 

verification. 

Although template-based methods achieve near real-time performance with a relatively 

small number of objects, real scalability to hundreds of partially occluded objects 

represented with the thousands of view dependent templates is still an issue for these 

approaches. 

Line-based methods. Scalability issues have just recently been addressed by two 

methods [10], [9]. Relying on the SIFT-like detection pipeline, these methods introduced a 

specific line-based detector and a descriptor to avoid the sliding window approach typical 

for template matching. Damen et al. [10] introduced a local shape descriptor that computes 

relative orientations and distances between consecutive line segments. Although it has 

shown promising results, it lacks proper evaluation over standard challenging texture-less 

and textured datasets. Tombari et al. [9] proposed the BOLD descriptor, which encodes 

groups of neighboring line segments in a way that is invariant to rotation and scale changes. 

Besides excellent results on several texture-less datasets, detection accuracy of textured 

objects and curvilinear shapes is still limited. 

By analyzing the performance of line-based methods, we observed that their accuracy 

on textured datasets is still inferior to SIFT-like methods. Conversely, our novel descriptor 

LineHOG significantly improves results of these methods by including appearance 

information around line segments in addition to just using line segments. We will start by 

giving a description of the proposed line based detector/descriptor called LineHOG. 

Afterwards, we will describe the entire pipeline for the generic and scalable detection 

procedure. 

3. LINEHOG DETECTOR AND DESCRIPTOR 

Instead of using salient keypoints to compute local appearance around them, our method 

relays on line segments which define a more global neighborhood around them. This seems 

to be a crucial concept for texture-less object detection. Although our method is 

independent of a specific line segment detector, repeatability of the extracted line segments 

is important for further processing. Among several line segment extraction algorithms 

recently proposed in the literature we have found that Line Segment Detector (LSD) [18, 

19] provides high repeatability of the extracted segments, in line with what reported in [9]. 

Fig. 2 shows an example of LSD algorithm results. To overcome known limitations of the 

LSD algorithm in presence of noise and shadows, we extract line segments at multiple 

scales. Note that the number of extracted line segments is relatively small compared to the 

number of extracted keypoints in case of local feature based methods (SIFT, SURF, etc.), 

which additionally improves the overall efficiency of the method. 
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Fig. 2 An example of LSD (Line Segment Detector) algorithm results. 

The LineHOG descriptor that we propose, captures the distribution of gradient 

orientations around a line segment relative to the segment’s orientation. It is based on HOG 

[18], but contrary to the original HOG which is computed globally for the template defining 

the object at some view, the proposed descriptor is semi-global, as it is applied on an object 

subregion delimited by the line segment’s length. Since it is computed relatively to the 

dominant orientation and length of the line segment, the descriptor is rotation and scale 

invariant. 

In practice, we compute the LineHOG descriptor by firstly defining a rectangular 

region of interest around the line segment with the size determined by the length and the 

orientation of the segment. If we denote the length of the line as L, then the region used 

for LineHOG computation is of size 2L×2L, centered around the line segment (Fig. 3). 

The edge orientation pattern in the area of the line segment is described by a HOG 

computed relatively to the orientation, position and length of the segment. More details 

about descriptor computation, along with parameters used, are given in section 5. 

 

 

Fig. 3 Illustration of region over which our LineHOG descriptor is computed. A1A2 

represents a line segment of length L. Surrounding region of size 2L×2L is divided 

into blocks of size L/2, with stride L/4. A histogram of edge orientations is computed 

for each block, and concatenated into a final descriptor. 
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4. LINE-BASED OBJECT DETECTION METHOD 

Our object detection scenario assumes that multiple objects are given in a database, 

where each object is represented by a set of RGB images capturing the object seen from 

different viewpoints. Given a query image, the task is to locate all database objects that 

appear in the image. In practice, one or multiple objects from the database are present in the 

query image, but the size of the database, containing dozens of objects, extends beyond the 

number of objects usually present in one query image. 

We achieve the scalability of the method by pre-processing images from the database, 

and building an efficient indexing data structure. This is done in an off-line phase, and does 

not affect run-time performance. The indexing data structure is later utilized in on-line 

detection phase to aid line segment matching. Concretely, for all images in the database, we 

extract line segments at several different scales and compute LineHOG descriptors, as 

previously described. Then, a randomized kd-tree forest [21] is built over all extracted 

LineHOG descriptors, which enables fast approximate NN search in detection phase. 

On-line object detection phase should detect database objects that appear in the given 

query image. It starts by extracting line segments from the query image, and finding similar 

matches from the database. Each found match represents one object hypothesis, which is 

defined by an object that matched line segment belongs to. For all object hypothesis we 

compute a score, which represents an input to the multiple object detection phase, where we 

determine which hypothesis are promoted to object detections. Therefore, our object 

detection method consists of the following steps: 

 Line segment extraction and matching. 

 Object hypotheses generation. 

 Object hypotheses scoring. 

 Multiple object reasoning. 

A detailed description of each step is given in the following. 

4.1. Line segment extraction and matching  

The goal of this step is to extract line segments from the query image, and to match them 

to the database. For each line segment from the query image, its match is line segment from 

the database with the most similar LineHOG descriptor. Matched line segment determines 

an exact view of an object, and is used to form an object hypothesis. To efficiently tackle 

descriptor matching we use a kd-tree forest, built in the off-line phase. To allow object 

detection at different scales the query image is downscaled several times before line 

segment extraction. 

4.2. Object hypotheses generation  

Each matched line segment defines one object hypothesis by its position, orientation and 

scale. We start by estimating a similarity transformation for every pair of matched line 

segments, and then refine it to estimate the full homography. Initial similarity transformation 

is used to transform line segments from the database image to the query image, and to detect 

inliers. Detected inliers are then used as new matches for estimating the full homography. 

By using this approach, we are able to generate hypotheses with only a single pair of 

matched line segments. This results in a significant reduction of possible hypothesis and 
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increased efficiency of the object detection procedure. Since our method performs 

exhaustive search over all possible hypothesis, it eliminates the randomness concept typical 

for the RANSAC based algorithms [22]. 

 

Fig. 4 Illustration of two matched line segments q and r. Similarity transformation S 

transforms line segment r to line segment q. The S can be obtained by solving a 

system of linear equations given by equation (2). 

Estimation of similarity transformation 

The matched line segments completely define a similarity transformation matrix S3×3 

by their endpoints: 
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Such transformation is computed from 2 pairs of matched line endpoints which define 4 
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Since we match every line segment in the query image to the database, there are as many 

object hypotheses as line segments in the query image. The number of hypothesis does 

not depend on the number of images in the database, and that makes our method as 

scalable as the approximate nearest neighbor algorithm used (kd-tree forest [21]). 

Inlier detection  

The goal of this step is to determine line segments in the query image Q, which are 

inliers to the train image R (which contains matched segment), under similarity 

transformation S. Given the matched line segment in R and the transformation S, we apply 

the transformation to all other line segments from the train image R to detect inliers. 
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Here we define criteria for determining inliers. Let us denote line segments from the 

query image Q as qi, and other line segments extracted on the object of interest (from the 

train image R) as rj. Further, let S(rj) be the line segment rj transformed by S. For every rj, 

a set of possible inliers Inl(rj) consists of line segments from the image Q that 

simultaneously satisfy thresholds by position (Tc), orientation (Tφ), and length (Tl): 

 

 j i j j j(r ) {q : ( , (r )) ( , (r )) ( , (r )) }c i c i l i lInl I d q S T d q S T d q S T         (3) 

where dc(q,r) represents the distance between centers of line segments q and r, dφ(q,r) is a 

difference of the two line segment orientations, and dl(q,r) is a relative ratio of the line 

segment lengths: 
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To find an inlier match rj
*ϵQ for every line segment rjϵR, we formulate our problem 

as the weighted bipartite matching (WBM) between the set of line segments S(rj) and the 

set of line segments qi. In the bipartite matching graph, edges are added between the node 

that represent line segment S(rj), and nodes that represent line segments from the set of 

possible inliers (2). Edge weights are given by a composite distance measure: 

 ( , ) ( , ) ( , ) ( , )ld q r d q r d q r d q r      (5) 

where α and β are orientation and relative length weighting parameters. The measure is 

inspired by the oriented Chamfer distance [14], and extended to be used with line segments. 

To efficiently solve the WBM problem we are using a greedy algorithm, which gives 

suboptimal solution, but performs extremely fast. Other matching strategies may be 

employed as well, such as the Hungarian algorithm [23]. As a simplified alternative to 

the WBM formulation, inliers could be detected by finding the closest line segment in 

Inl(rj): 

 *

( )

arg min ( , ( ))
i i

j i j
q Inl r

r d q S r


  (6) 

The WBM approach prevents one line segment qi ϵ Q to be counted as an inlier to multiple 

line segments rjϵR. The positive impact of WBM is shown in Table III. 

Full homography estimation  

A set of all inliers rj
* is used to estimate the full homography transformation H. The 

center of each line segment rj and the center of its inlier match rj
*, is used as a pair to form a 

system of equations. Solving the system in the least square fashion, gives the full 

homography H between the image R and the image Q.  

The full homography H is iteratively refined, by re-estimating the set of inliers rj
* and 

the homography H in each iteration. During the iterative refinement, inlier thresholds (2) 



 Detection of Texture-Less Objects by Line-Based Approach 87 

are set to be twice as restrictive (Tc/2,Tφ/2,Tl/2), as proposed by Lowe [24]. The result of 

this step is the full homography H of the object hypothesis. 

4.3. Object hypotheses scoring  

For each object hypothesis, a similarity score score(R;H) is computed as the function 

of the number of inliers Ninl(R;H), and the number of line segments in the train image R. 

Here we exploited the idea from [11] to compensate the bias toward simpler objects: 

 
( , )
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N R H
score R H
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where |R| is the number of line segments in a training image R, |R|avg is the average 

number of line segments over all training images, and λ ϵ [0; 1] is a parameter that 

decreases the score for objects with fewer edge lines than the average. This score is then 

subject to a threshold Tobj used to decide whether the object is detected in the scene. 

For λ=1, the score corresponds to the distance used in [14]. Lower values of λ decrease 

the score for objects with fewer line segments than average. This has a positive impact on 

the algorithm performance, as can be seen in Table 3. 

4.4. Multiple object reasoning 

A naive approach for multiple object reasoning would be to accept all object hypotheses 

that satisfy the threshold Tobj. That could lead to increasing of false positives, since multiple 

objects can be detected at the same position in the query image. 

To reduce the number of false positive detections, we restrict a line segment to be an 

inlier in no more than one detected object. We examine all possible object hypotheses in 

a decreasing order of score in equation 7. Object hypotheses are processed in a greedy 

fashion using the priority queue for efficient computation. After an object hypothesis has 

been processed, its inliers rj
*ϵQ are „banned“. This effectively means that banned inliers 

cannot be used by subsequent object hypotheses, which reduces their score in equation 7. 

This kind of inlier banning makes possible to avoid multiple object detections at the same 

position in the query image Q. Positive impact of inlier banning can be seen in Table 3. 

When multiple views of an object are presented in the training database, our method 

can find the most similar view with as much as one correct line segment match. The 

standard methods based on RANSAC typically require at least three feature matches to 

be found in the same view to detect an object [25]. This restricts the accuracy of such 

methods because matches could be spread through similar views. Being able to detect an 

object with only one correct line segment match makes our method naturally applicable 

to scenarios when multiple views of an object are given. 
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5. EXPERIMENTAL EVALUATION 

We performed the extensive evaluation of the proposed method on four publicly 

available datasets and compared it to the state-of-the-art methods for texture-less (LINE-

2D [12], BOLD [9], Damen [10], etc.) and textured (SIFT [1], SURF [2], ORB [4]) 

object detection. The overview of the four used datasets is given in Table 1, while 

examples of objects and scenes from these datasets are shown in Fig.5. 

Table 1 Test datasets overview including: number of objects (#obj), number of training 

images (#train) and number of test images (#test). 

Dataset textured #obj #train #test 

D-Textureless [9] no 9 9 54 

Obj30 [10] no 30 1433 1220 

Caltech Covers [9] yes 80 80 50 

CMU-KO8 Multi [13] no 8 400 800 

5.1. Parameters 

For line segment extraction in all datasets we used default parameters of the LSD 

algorithm provided by [18]. After extraction, line segments with a length less than the 

predefined threshold are discarded (in our case set to 10 pixels). A scale pyramid is 

constructed by successive resizing of the image by the factor of 0.8 using bicubic 

interpolation. By default, we used 2 scales for line segment extraction (one original and 

one reduced), except for Damen’s Obj30 dataset [10] where we needed 5 scales. 

LineHOG descriptors are computed by first warping a patch around the oriented line 

segment to the canonical rectangular region. Then the rectangular region is divided into 

4×4 blocks with strides equals to the half of the block size. A histogram of 13 gradient 

orientations (12 orientation bins + 1 non-oriented) is computed for each block and no 

block grouping into cells was used for normalization. This results in a 637 dimensional 

descriptor for the line segment.  

Approximate descriptor matching was done using 4 kd-trees inside FLANN [19] 

framework. Homography estimation parameters were set to Tc= 20; Tφ=π/8; Tl=0.5; α=50; 

β=20, and score parameter λ=0.75. For all descriptors comparison we used the standard 

Euclidean distance. Experiments with other distance measures including Bhattacharya’s 

( , ) 1d x y xy   [27] and 2 distance ( , ) 1 2 / ( )d x y xy x y   , have shown no gain in 

performance. All result curves are produced by varying the Tobj parameter. Results of other 

methods used for comparison are taken from their respective publications. 
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Fig. 5 Preview of our LineHOG detection results on four test datasets. First row shows 

results on D-Textureless [9], second row on Obj30 [10], third row on Caltech 

Covers subset [9], and fourth row on CMU-KO8 Multivew [13] dataset. Note that 

in the Obj30 dataset only one central object should be detected, while in the 

Caltech Covers not all covers in the test image are presented in the database. 

5.2. Results on different datasets 

D-Textureless dataset: We first evaluated the algorithm on the D-Textureless dataset 

[9]. The dataset contains 9 textureless objects, and 55 query images with moderate clutter 

and occlusions. We were detecting all 9 objects simultaneously in each scene. The ROC 

curve presented in Fig. 6 shows that LineHOG outperforms all other methods, including 

methods specifically designed for textureless objects (BOLD, LINE-2D and Halcon). As 

expected, these methods get significantly better results than SIFT, SURF and ORB. A 

reason for lower performance of LINE-2D and Halcon methods lies in their limitation for 

occlusions handling. 

Obj30 dataset: We also evaluated our method on the Obj30 dataset proposed by 

Damen [10], which is characterized by a large variety of shapes and a low image quality. 

It contains 30 texture-less objects recorded by a hand-mounted camera, with 40-50 views 

per object for training. For testing, 1220 images are used, where each scene contains one 

dominant object from the database. To be able to compare our method with reported 

results, we search for all 30 objects and detect the object yielding the best score. Since 

other authors reported precision at 50% recall, we gave comparison of the same measure 

in Table II. Other results in Table II are taken from [8]. All compared methods except our 
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LineHOG and Damen’s are template-based and generate thousands of training templates 

that restrict their scalability. While Damen’s method is scalable to some extent, its 

precision is inferior to our results. 

Table 2 Comparison of results on Obj30 dataset [10]. 

Method Precision at 50% recall 

LineHOG (our) 92% 

DTT-OPT [8] 90% 

SelEdge [11] 86% 

LINE-2D [6] 80% 

 

Fig. 6 Comparasion of results on D-Textureless dataset. Note the advantage of our 

method at lower FPR values, where TPR of other methods drops drastically, while 

we retain TPR>0.72, even for FPR = 0. 

Textured Caltech Covers dataset: To test LineHOG performance for textured object 

detection in a heavily cluttered environment with significant occlusions, we used a subset of 

Caltech Game Covers dataset provided by [9]. This dataset contains 80 objects and 50 query 

images synthetically built to simulate clutter and occlusion up to 90%. During tests, we 

were looking for all 80 models in each query image. Fig.7 shows that our method achieves 

comparable performance to that of SIFT and SURF, although these methods should be 

dominant when dealing with textured objects. 
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Fig. 7 Comparasion of results on Caltech Covers dataset of highly textured objects under 

large clutter and occlusion. 

CMU Kitchen Occlusion dataset: We complemented our evaluation by testing on 

the extremely challenging CMU Kitchen Occlusion dataset [13], consisting of 8 texture-

less household objects in real cluttered environments under high level of occlusion. This 

dataset is divided into two subsets intended to test object detection algorithms trained 

with, respectively, a single view and multiple views of an object. Since in practice, one 

would only detect objects under multiple views, we evaluated our algorithm only on this 

subset denoted as CMU-KO8 Multi. Following the experimental protocol proposed in 

[13], we present the results in terms of Recall versus False Positives Per Image (fppi) 

averaged across all 8 objects, where an object is correctly detected if the Intersection-

over-Union (IoU) of the predicted bounding box and the ground-truth one is greater than 

0.5. LineHOG results are compared to those reported in [13] and [9]. From Fig. 8 it can 

be observed that LineHOG outperforms other general methods that operate without any 

a-priori knowledge of the scene (LINE-2D, BOLD). It can be observed that for lower 

fppi values LineHOG delivers dominant results compared to all other methods including 

template based methods tuned for occlusion reasoning [13]. 
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Fig. 8 Average detection rate (recall) on challenging CMU-KO8 Multiview dataset. 

5.3. Impact of different object detection techniques 

To analyze the importance of several techniques described in Section 4, we tested 

their impact on overall detection results. Specifically we measured impact of following 

techniques: Weighted Bipartite Matching (WBM), compensating the bias toward simpler 

objects (equation 7), and inlier banning. In Table 3 we report results that show the crucial 

importance of these techniques for reaching high quality results. It can be observed that 

all presented techniques consistently improve results on all datasets. 

Table 3 Mean Average Precision (MAP) over 4 datasets, showing the impact of different 

object detection techniques. (a): The full proposed LineHOG method. (b): 

LineHOG method without biasing towards simpler object (λ = 1). (c): 

Represents (b) where WBM is replaced with (5). (d): Represents (c) with naive 

approach to multiple object reasoning (i.e. without inlier banning). 

Dataset (a) (b) (b) (d) 

D-Textureless [9] 0.94 0.911 0.894 0.882 

Obj30 [10] 0.705 0.668 0.644 0.644 

Caltech Covers [9] 0.611 0.591 0.542 0.416 

CMU-KO8 Multiview [13] 0.443 0.397 0.360 0.359 
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5.4. Runtime performances 

Finally we give runtime performances of the implemented algorithm in Table 4. The 

implementation was done in C++ utilizing OpenCV, and all tests were run on a 3.6 GHz 

Intel Core i7 computer. We made only straightforward multi-threaded parallelization of 

the HOG-like descriptor, assuming that an implementation on GPU would significantly 

improve time performances. Note that the runtime is directly dependent on the number of 

extracted line segments in the test image, while being independent of the number of 

objects in the database (as described in Section 4). 

Table 4 Execution time of our algorithm depending on the average number of extracted 

line segments per image (including all scales). 

Dataset num. scales num. lines runtime 

D-Textureless [9] 2 633 156 ms 

Obj30 [10] 5 214 118 ms 

Caltech Covers [9] 2 2446 1157 ms 

CMU-KO8 Multiview [13] 2 952 216 ms 

6. CONCLUSION 

We presented a method for object instance detection that is generic, scalable, fast and 

highly accurate. The key results we achieved are scalable object detection, high accuracy 

for both textured and texture-less objects, and robustness to clutter and occlusion. We 

noticed several possible improvements in the line segment extraction phase that could 

make it more resistant to blur, shadows and scale changes. We also plan to include an 

object verification step that will compare a global color gradient descriptor over the 

region delimited by all inliers in the query image. It allows fast rejection of false positive 

object detections and improves overall results. 
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