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Abstract. The main goal of time series analysis is explaining the correlation and the 

main features of the data in chronological order by using appropriate statistical 

models. It is being used in various aspects of life and work, as well as in forecasting 

future product demands, service demands, etc. The most common type of time series 

data is the one whose observations are taken in equally distributed time intervals 

(daily, weekly, monthly, etc.). However, in this paper, we analyze a different kind of 

time series which represents product purchase moments. Thus, since there are not any 

regular observation periods, this irregular time series must be transformed in some 

way before traditional methods of analysis can be applied.  After the data 

transformation is complete, the next step is modeling the nonstationary time series 

using commonly known models such as ARIMA and PNBD, which have been chosen for 

their fairly easy and successful forecasting processes. The goal of this analysis is timely 

product advertising to a customer in order to increase sales. 

Unlike some other models that consider the relationship between two or more 

different phenomena, time series models, including ARIMA, Pareto/NBD and Poisson 

models, examine the impact of historical values of a single phenomenon on its present 

and future value. This approach enables the study of the behavior of a given 

phenomenon over time and produces good results, especially if a large amount of 

historical data is available. 
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1. INTRODUCTION 

Time series are a common part of everyday life and work. Thus, their analysis is a 

statistical discipline which has seen the most dynamic development in the past decade. 

Considering the fact that the decision-making process is often closely related to forecasting 

future values of time dependent variables, the time series analysis plays a very important 

role in this process. In this context, forecasting future values represents an analysis of 

historical data and using a corresponding mathematical method to extrapolate future 

revenue.  

The main subject of this paper is irregular time series which hold each purchase 

timestamp and quantity the customer has bought. The main cause of irregularity in this 

time series is the fact that time intervals between samples are unequal to one another; 

samples are not being taken in regular time intervals (daily, weekly, etc.,), but instead at 

the precise moment of the purchase. For this reason, time series like this one cannot be 

analyzed and modeled by standard methods. Certain mathematical transformations have 

to be performed on the data, before continuing with the regular time series analysis. The 

general idea is to calculate the average daily consumption of some product for the 

customer, based on the time period between two purchases and quantity of the product which 

a customer has bought. In this way, we get regular time series of average consumption on a 

daily level. 

ARMA (Autoregressive Moving Model) model belongs to a group of stochastic models 

which may be used in a simulation as well as in a time series analysis. If the time series is 

nonstationary, as in this case, but can be reduced to stationary, the ARIMA (Autoregressive 

Integrated Moving Model) model is the appropriate model for analysis. The seasonal 

ARIMA model comes from the standard ARIMA model, but as an important factor includes 

seasonal component of the time series. As a matter of fact, the seasonal ARIMA model is 

one of the most powerful models for time series analysis considering the fact it can fit most 

time series data, regardless of their seasonal component‟s regularity. Box and Jenkins were 

pioneers of this methodology in the seventies. 

Considering the complexity of mathematical calculations in the model building process, 

this paper will rely mostly on the existing statistical software solutions- programming 

language R, for calculations and creating related graphics. 

2. PROBLEM DOMAIN AND RELATED WORK 

When it comes to purchase analysis and processing those kinds of data, most papers, as 

well as commercial systems, are focusing on so called, recommender systems. The main 

characteristics of these systems is the fact that based on series of previous purchases, 

personalized recommendations are generated for existing customers. The domain of these 

solutions is closely related to transactions between business and consumers (B2C). The 

other type of transactions, business to business, or shorter, B2B, is the one rarely seen in 

papers. Some of the main differences [1] between these two types of transactions are shown 

in Error! Reference source not found.. 
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Table 1 Comparison of transaction types  

Wholesale Retail 

Purchase in bulk. Purchase of few items. 

Decisions about purchase are being made by board. Decisions are made by an individual. 

Longer time periods between purchases. Very short time periods between 

purchases. 

Rational decision. Emotional decisions. 

Purchase at need. Desire driven purchases. 

All of this points the fact that the B2B type of purchase is a more stable process in 

general. Rationality of decisions, longer time period between purchases, as well as larger 

bought quantity are characteristics of a process driven by some rules, and as such less 

prone to random events. 

Most of the research on this topic comes from the field of marketing. Papers dealing 

with this topic, in addition to the time of next purchase, usually predict future values of 

other variables, such as brand choice and quantity. 

Already existing solutions in this area can be divided into two larger units. The first 

group of solutions starts with the assumption that behind each purchase there is a motive, 

that is, the decision to make is: 'whether to buy?'. The second approach does not question 

the circumstances under which the transaction occurred but looks at them from the 

perspective of the time distance between every two purchases. This approach aims to find 

the answer to the question 'when to buy?'. 

2.1. Whether to buy? 

As already pointed out, this group is characterized by a buying motive. The basic idea 

behind this approach is that the consumer purchases only when the need arises. The 

models from this group perform better when applied to the data from a B2B business. 

The reason for this is rational, need-driven purchasing, which are the hallmarks of this 

type of business. One of the representatives of this group is addressed in [2]. The authors 

of this paper assume that every purchase is made when inventory falls below a certain 

limit. Modeling is done separately for each segment (product). Each edited buyer-product 

pair is assigned two variables: 

CR
h – spending rate for the customer h 

INV
h

t – inventory at the time t for the customer h 

Both variables affect the probability of buying (with some coefficient). Consumption 

rates have a positive impact on the likelihood of a purchase since the idea is that higher-

end customers have more reason to make a purchase. The rate of consumption for a 

customer is calculated in the initialization period, namely: by finding the average value of 

weekly consumption during this period. In contrast to the consumption rate which has a 

positive correlation to the purchase probability, the inventory has a negative one. Buyers 

with a smaller stock status are thought to have a greater initiative to make their next 

purchase. The value of this variable is calculated as the difference between the last 

purchased quantity and the product of the elapsed time and the rate of consumption. 
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In addition to these two, there is a third, equally significant, variable CV
h

tr. It talks 

about the customer's attachment to a specific product. Its primary purpose is to manage 

changes in probability that arise from the ability of a customer to choose a third-party 

product. 

Some of the problems with this approach are: 

 The rate calculated during the initialization period is never adjusted. 

 Customer growth and product seasonality are not modeled. 

One difference of this approach to the problem domain is the use of the CV
h

tr 

parameter. As already pointed out, the purpose of this parameter is to introduce competition 

into the model. Basically, it is not necessary. Of interest to the problem is any purchase that 

happens, regardless of the origin of the product. The reason for this is the potential 

influence on the customer from the perspective of choosing a supplier. 

An approach similar to this can be found in [3]Error! Reference source not found.. 

The authors in this paper combine the choice of time of purchase and brand in one 

model. The assumption is that the buyer first comes into a situation where it is necessary 

for him to make a purchase, and then he chooses the manufacturer. Since the purchase 

moment is of the most interest in this paper, we will focus on that part. The paper defines 

the frontier of purchases. This limit computes based on two variables: 

FREQ
i – frequency of purchase 

LQ
i
t – the normalized amount of the last purchase 

Similar as in the previous paper where the customer's consumption rate is calculated 

during the initialization period and is never changed again, here as well, the purchase 

frequency is also calculated only during this period and is valid for the entire lifetime of 

the customer. LQ
i
t is used to bring in the effects of buying different quantities of  the 

product. This variable is calculated as the last purchased quantity minus the average 

purchased quantity in the initialization period. 

The purchase frontier is further used in the work as a basis for making purchasing 

decisions. For each moment, each vendor is assigned a value that indicates the 

'desirability' of that vendor. This value depends on the collection of marketing variables 

which define each vendor at that moment. Transactions occur when the desirability of a 

vendor exceeds the purchasing frontier. 

A more advance modeling was later used in [4] that combines the RFM ([5], [6]) 

model and the ARIMA model [7]. 

2.2. When to buy? 

This group of solutions, as noted above, is characterized by modeling the time between 

two purchases. The general approach is based on finding a distribution or hazard function 

that best describes time periods between transactions, parameterizing this distribution / 

hazard function for each customer-product pair, and then applying it to a specific instance. 

The first attempt to find the distribution was seen in [8]Error! Reference source not 

found.. Here, an exponential distribution was used for modeling purposes. The downside 

of this approach is that, with exponential distribution, it is by no means possible to take 

advantage of information that the customer has not yet purchased the product. That is, it 

is impossible to find the probability of a purchase in the coming period, provided that the 
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buyer has not yet purchased the product. One of the earlier attempts to solve this problem 

can be found in [9]Error! Reference source not found.. This is where authors choose 

Erlang-2 for distribution function. Although the distribution chosen in this way has 

produced good results, it cannot be considered universal and of course it cannot be applied 

to every problem. An overview of the characteristics of distributions found in this field, as 

well as their specific use cases, is given in [10]Error! Reference source not found.. The 

distributions covered in this paper are: Exponential, Erlang-2, Weibull, log-logistic and 

expo-power. 

The first model (Pareto/NBD) that has found application in the real world and is still 

used today was published in [11]. In this model, in addition to the time between two 

purchases, the customer churn probability is modeled in parallel. The authors in this 

paper use the Poisson distribution to model the number of purchases a customer makes in 

a period (the assumption is that the time between two purchases follows an Exponential 

distribution), while using the Exponential distribution to model the customer lifetime. 

Purchase frequency and customer lifetime, at the population level, are modeled using 

Gamma distributions. In [12] the Markov chain the Monte Carlo model was used to 

better estimate the parameters of the Pareto/NBD model.  

Additional alternatives to this model were later published in [13] (BG/NBD) and [14] 

(BG/BB). In the former, the Geometric distribution is used instead of the Exponential 

Distribution to model the customer's lifetime (the assumption being that the customer 

becomes inactive with a fixed probability after each purchase). At the population level, as 

with the Pareto/NBD model, the Gamma distribution is used to model the time between 

purchases while using the Beta-Geometric distribution for the lifetime. For the latter, in 

addition to the Geometric distribution for lifetime modeling, an additional change is that 

the Beta distribution is used to model the number of transactions. The idea here is that the 

buyer has discrete opportunities when he can make a purchase. Similar to the BG / NBD 

model, at the population level, the Beta-Geometric distribution is used to model customer 

lifetime, while the Beta distribution is used to model the time between two purchases. 

Many improvements were later developed for these two models. Some examples of this 

for the BG/NBD model can be seen in [15] and [16]. 

Later in [17], another addition was added to the previous models. A gamma/gamma 

model was added to model the monetary values of customer transactions. Here the 

assumption is made that the number of transactions a customer makes, and the value of each 

transaction, are completely independent. An alternative to this was seen in [18], where these 

two are modeled together.  

 Another progress on this topic was seen in [19]. Most papers that take the second 

approach, that is, model the time between two purchases, use the last purchase time as a 

starting point. In this approach, the same model, calculated during the initialization 

period, is re-applied each time after a new purchase. The downside to this approach is 

that the purchase history is never considered when re-calculating. In addition to this 

problem, if discrete measures of time are expressed in weeks or months, it is not possible 

to predict two or more purchases in the same period using such models. As a solution, the 

author suggests using calendar time instead of elapsed time. The goal is to include all 

available information in the model, from the first purchase up until the moment of 

calculations. Another benefit of using calendar time is the ability to add seasonality. To 

achieve this, four components are used: calendar elapsed time, elapsed time between 
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purchases, covariance functions, and deviation from the mean time between purchases. In 

addition to these components, the author also adds 'at-risk' variables in his model to 

determine the likelihood of successive purchases as well as purchases on specific days. 

The application of these variables, in addition to controlling multiple purchases at a time, 

is, for example, assigning probabilities to purchases at certain moments. In the wholesale 

world, for example, it might be important to set the probability of customers buying any 

products on Saturdays and Sundays to zero. 

Regardless of the choice of approach, it is important to note that no solution is universal 

and, to a large extent, depends on the specific use case. This results in the fact that when 

applying one of the solutions to a different data set, it is necessary to allocate additional time 

to investigate the specific case of application as well as to parameterize the models used. 

3. IMPLEMENTED SOLUTIONS 

For comparison purposes, four different algorithms have been implemented and used 

to predict future moments of purchases. The ARIMA model was used as a representative 

of the first group of solutions mentioned in the previous chapter (0). From the second 

group (0) the Pareto/NBD model and its modifications in the form of a Poisson 

distribution were implemented. For the sake of comparison, the Naive forecasting was 

also added as a base of comparison. Each one will be discussed below. 

A. ARIMA 

As noted above, given that the data being analyzed does not represent a normal time 

series, it must first be properly transformed. It is for this reason that the first step in the 

process of analyzing and predicting future values is to prepare data. 

After loading all purchases made by a particular consumer, the average daily 

consumption of a product is calculated up to the desired date. Going through a series of 

purchases, for each two purchases, the number of days between them is calculated, and then 

dividing the purchased quantity in the first by the number of days gives an average daily 

consumption for the period between those two specific purchases. In this way, a regular time 

series of daily product consumption is obtained from the initial set of discrete purchases. This 

process must be performed for each product that the customer purchases, and additionally, 

for each consumer in the system. In addition, a series of average daily consumption is loaded 

directly from the database, but at the product level, i.e. daily product consumption by all 

customers in the system. The reason for using this extra set is a more accurate consumption 

forecast for customers with a scarce shopping history. 

After obtaining a regular time series, one can start analyzing and predicting future values 

using the ARIMA model. All calculations at this stage related to time series modeling were 

performed in the R software language due to the availability of adequate packages. 

Based on the last recorded purchase quantity of a particular product, it is with certain 

probability that the consumer will consume all supplies of that product within the next 

week. If this is the case, then that consumer and item pair is added to the list of expected 

purchases if its consumption is within the limits of what is considered reasonable.  
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B. Pareto/NBD 

Unlike the ARIMA model, the Pareto/NBD model‟s input data do not need to first be 

transformed. This model requires only the purchase frequency and the elapsed time since 

the last purchase. However, in order to use the information on the quantity of products 

purchased, the total purchased quantity is used instead of the number of transactions for 

the frequency calculation. That is, the unit consumption rate of a product is calculated, 

and this is used instead of the purchase frequency. 

After this, as with the ARIMA model, all calculations related to time series modeling 

were performed in R software language. Using the forecast package, the estimated number 

of purchases by the end of next week is calculated (i.e. since instead of the frequency of 

purchases, the unit consumption rate of the product was fed into the model, the output is 

going to be the expected consumption of the product by the end of the week). If this value is 

greater than the quantity of the product purchased at the last purchase, it is considered that 

the buyer will make another purchase in the forthcoming period. 

In theory, the Pareto/NBD model can be created once for the entire population level, 

but this was not possible in this case due to limitations in the form of memory resources 

needed, so the processing is divided into several stages. In each step, processing is 

performed for all of the products for one customer. Thus, all of the products for each 

customer are considered to be independent, that is, the assumption is that the consumptions 

of each product are independent. 

C. Poisson distribution 

As stated earlier this is just a modification of the Pareto/NBD model. The first difference 

is that in this approach, the necessary modeling is reduced to a minimum. The Pareto/NBD 

model searches for the parameters of Gamma distributions at the population level, which is 

useful if we are interested in the general characteristics, such as the movement of the global 

trend in the number of purchases, the average customer lifetime, etc. However, for the very 

domain of this problem (predicting the next purchases), it is not helpful. As this is not very 

useful and has an impact on performance, this part has been dropped. 

Another change concerns the way in which the probability of a customer churn is 

predicted. In the Pareto/NBD model, as mentioned above, the customer lifetime is 

modeled by Exponential Distribution. Instead, the Poisson's distribution is again used as 

a part of this approach. For the purpose of calculating the probability of a purchase, two 

probabilities are calculated. 

First, the probability that the buyer will run out of stock between the last purchase date 

and the current date. This probability is considered to be directly proportional to the 

probability of the customer churning (the greater the likelihood that the customer consumes 

all of the supplies during this period, the greater the likelihood that they abandoned this 

product). In addition, the probability that the buyer will run out of supplies by the end of the 

week is also calculated in a similar way as with the Pareto/NBD model. This value is 

directly proportional to the probability of a customer making a purchase. 



184 B. PREDIĆ, N. RADOSAVLJEVIĆ, A. STOJĈIĆ 

D. Naive forecasting 

For comparison purposes, a version of the naive forecasting method was implemented. 

This method finds the moment of the next purchase by calculating three parameters for each 

customer-product pair: the mean, minimum and maximum time between two purchases. 

Using these parameters, the time of the next purchase was obtained by adding the mean 

time between two purchases at the time of the last purchase, provided that there are no 

major deviations from the minimum and maximum time. The allowed difference between 

the two parameters is obtained by striking a balance between the precision of the prediction 

and the number of predictions to be made. If a large difference were used, precision would 

drop dramatically. If that difference were too small, then there would not be enough 

predictions for the next week.  

4, METHOD COMPARISON 

All methods were tested against real data from medical device manufacturers. 

The data we worked with consist of over seven and a half million sales transactions 

collected over four years and five months. The set is made up of just over 12,000 unique 

customers, of whom about 10,200 have had repeat purchases. On the other hand, about 

10,600 unique products were sold during this period. For testing purposes, predictions 

were made on Sundays for a period of next week. The average number of transactions on 

a weekly basis during the test period was approximately 31,500. The shopping period 

was divided into: 

 Training and validation set - 50% 

 Test set - 50% 

The reason for this split came from the sub-section for an unusually large test set. 

Namely, since all the purchase predictions, not just the ones related to the supplier whose 

data we use, are expected to exit the system, it was necessary to remove the buyers and 

the purchase predictions that never happened again. In such cases, we assume that the 

purchases were made with another supplier or that the buyer found another alternative to 

the product. As we cannot be sure when a purchase in this group occurred at another 

vendor, we must remove it from the statistics. To ensure that the purchase did not occur, 

the test period must be large enough to remove any doubt. 

All models were compared by four criteria: 

 the percentage of purchases made relative to the number of predicted purchases 

(True predictions) 

 the percentage of purchases made relative to the number of predicted purchases 

excluding products that were never purchased again (True predictions excluding 

abandoned items) 

 percentage of projected purchases compared to the number of realized purchases 

(Purchase coverage) 

 the percentage of predicted purchases over the number of realized purchases, 

taking only those who have had at least two previous purchases (Purchase 

coverage (at least two prior purchases) 

The results of the comparison are given in the Fig. 1. 
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Fig. 1 Method comparison 

It can be seen immediately that all three models deliver dramatically better results in 

all categories than naive prediction. In addition, it can be seen that the Pareto / NBD and 

Poisson distribution are more accurate while ARIMA covers a larger number of cases. 

This can be attributed to the fact that ARIMA does not in any way predict the dying away 

of customers, that is, the extinction of extinct customers is done in a very primitive way 

(only expenditures that exceed the amount previously purchased are eliminated). It is also 

interesting that the Poisson distribution with modified identification of extinct customers 

gave better results than the Pareto / NBD model. This can be overwritten by the specifics 

of the problem with the characteristics of the B2B business model (general stability of 

the purchasing process). 

An interesting comparison of these models can also be made on the basis of their 

performance, that is, the execution time (given in Fig. 2). 
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In terms of performance, the worst results were given by ARIMA, the reason being 

that a complex model is created at the customer-product level, and communication with 

R is very demanding. The reason Poisson's distribution had better performance than the 

Pareto / NBD distribution is because the model being created is more primitive, that is, 

there are no population-level parameters. 

All data processing was done on a computer with an Intel brand i7-6700T processor 

and 8GB of RAM. The complexity of the algorithm is linearly dependent on the number 

of customer-product pairs, and this has favorable scalability outcomes. Also, the solutions 

can be largely parallelized and have elements of computation that can potentially be executed 

on the GPU, which would further increase performance. 

5. CONCLUSION  

Time series models are a very powerful tool for predicting future values and making 

decisions in different areas of life and work: economy, agriculture, industry, medicine, etc. 

It has been shown in practice that a large number of time-dependent phenomena can be 

modeled by stochastic processes. The prevalence and attractiveness of these models is due 

to their very structure, which is easy to understand and quite intuitive.  

Of course, like all models, the ones used in this paper are not a perfect representation of 

the real state of affairs, but nevertheless, they still allow for a fast and efficient procedure 

that gives a lot of precision with the forecast of future values. Depending on the dataset, as 

well as on the requirements, different models should be tried out and tested against the 

specific dataset. As it was shown in previous chapter ([0]), the ARIMA model covers a 

larger number of data, while the Pareto / NBD and Poisson distribution are more accurate. 

Fig. 2 Performance comparison 
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Depending on the purpose of the work, and the required level of performance, the 

appropriate forecasting model should be chosen. 

Besides the models described in this paper, there are many others that depending on the 

nature of data, may be better fit for forecasting. Many forecasting methods depend on the 

use of neural networks. Introduction in using neural networks for forecasting of financial 

markets may be found in [20]. Methods introduced here provide the necessary basis in 

further research work on this topic. More advanced neural networks are described in [21]. 

Here, authors start from implementing simple neural network and comparing its forecasting 

results against traditional Black-Scholes model. However, by far the best results are given 

by the hybrid model between the first two. 

Since neural networks are very common in time-series analysis and have also been 

proven to provide satisfying results in forecasting future values, they will certainly be the 

focus of future work on this topic. 
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