
FACTA UNIVERSITATIS

Series: Automatic Control and Robotics Vol. 19, No 3, 2020, pp. 163 - 174

https://doi.org/10.22190/FUACR2003163B

© 2020 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

IMPROVING INTERNET OF THINGS PARKING SYSTEMS

UDC (004.8:004.451.2)

Dušan Bogićević

University of Niš, Faculty of Electronic Engineering,

Department of Computer Science, Niš, Republic of Serbia

Abstract. Edge data processing represents the new evolution of the Internet and Cloud

computing. Its application to the Internet of Things (IoT) is a step towards faster processing of

information from sensors for better performance. In automated systems, we have a large number

of sensors, whose information needs to be processed in the shortest possible time and acted upon.
The paper describes the possibility of applying Artificial Intelligence on Edge devices using the

example of finding a parking space for a vehicle, and directing it based on the segment the vehicle

belongs to. Algorithm of Machine Learning is used for vehicle classification, which is based on
vehicle dimensions.

Key words: Machine learning, IoT, car segment, Arduino, Raspberry Pi

1. INTRODUCTION

In most cities today there is limited space for parking spaces. In addition, there are
more and more vehicles which are of different sizes. Increasing the number of vehicles
requires a better optimization of parking spaces. The problem of finding a parking space
is one of the problems addressed by IoT researchers. It is necessary to develop an IoT
application that will effectively save space (by determining the class of vehicle using its
dimension), find the closest parking spot and provide navigation instructions to it.
Different sensors may be used to collect parking occupancy information. The data sent
from the sensor is raw, and needs to be processed and analyzed. The number of devices
connected to the network as well as data processed on the servers is increasing.

Fourth industrial revolution requires increased data rates. The problem which is still
present is processing all data coming from the sensors in real time. One of the new trends in
the architecture of the Internet is to bring processing closer to the source, that is to the devices
where the data is generated. The two architectures that are proposed to process data
information closer to the origin are Edge and Fog computing. The most common devices used
to process information are gateway devices. It is possible to implement streaming data
processing on these devices in order to achieve better information processing.

 Received September 25, 2020

Corresponding author: Dušan Bogićević

University of Niš, Faculty of Electronic Engineering, Department of Computer Science, Aleksandra Medvedeva
14, 18000 Niš, Republic of Serbia

E-mail: dusanbogicevic@elfak.rs

164 D. BOGIĆEVIĆ

One of the common problems of drivers having larger vehicles is that they cannot

park in some individual parking spaces, and smaller vehicles take up more space than

they need. The difference in the required parking space is shown in Fig. 1.

Fig. 1 The difference in needed space

The auto industry in Europe has accepted the classification of vehicles into multiple

segments A, B, C, D, E, F, S, M, J depending on the vehicle dimensions. With the

development of the auto industry, there are changes in dimensions, and they overlap in

terms of dimensions in some segments. Classification of vehicles in the parking lot can

contribute to better organization and use of space. Depending on the segment they belong

to, vehicles have greater or less maneuverability that determine the space required for

successful parking. The user who would enter a parking lot equipped with vehicle

classification and smart routing needs to be provided with information on where to park

in the shortest time with the most efficient spare of parking space.

Vehicles could be classified based on dimensions, but it would lead to a problem because

it is not possible to clearly draw a line between segments. Vehicle segments in Europe do not

have formal characterization or regulations. Models segments tend to be based on comparison

of well-known brand models. For example, a car such as the Volkswagen Golf might be

described as being in the Ford Focus size class, or vice versa. The VW Polo is smaller, so it

belongs to the segment below the Golf, while the bigger Passat is one segment above [1].

Determining which segment the vehicle belongs to is made on the basis of all

dimensions, and only then it should be concluded which segment it is. IoT collects the

data and the AI processes the data to give them meaning [2]. In order to keep the previous

models and their belonging to the segments from the period when they were created, as

well as the new models and their belonging to the current segments, we need to use of

Machine Learning mechanisms and approach.

According to these observations, a suitable architecture for processing streaming data

close to the source of where it is created is analyzed. An attempt was made to find a

fitness ML algorithm which will get the best results for classification of a car by

segments. In this research both real sensors and simulated ones were used.

The paper is organized as follows. In section 2, is presented architecture of IoT systems

with technologies which will be used in research, also in this paper a literature survey in

this domain is made. Section 3 presents the proposed solution for improving the parking

system. The next section shows Implementation of the proposed solution with results

based on data from sensors, processed using ML algorithms. Concluding remarks are

listed in the final section.

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Volkswagen_Golf.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Ford_Focus_(international).html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/VW_Polo.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Volkswagen_Passat.html

 Improving Interent of Things parking systems 165

2. BACKGROUND AND RELATED WORK

2.1. Architecture of IoT

IoT devices are spread around the edge of the network, where data generation is

present. This data requires real-time processing without delay. Sending data to servers

remotely located is not the best solution for systems with these requirements. Bringing

the server to the edge of the network was first proposed by Cisco in 2012 and was called

Fog computing [8]. As devices are now more capable of performing complex computer

processing and data analysis, certain tasks can be performed on the devices themselves

without sending data and request to the server. This kind of architecture where processing

is done on Edge devices (smart phone, smart object ...) is called Edge computing.

Edge devices can serve other devices with weaker computing and communication

capabilities to connect to them and communicate with servers through them. A device that

would perform this functionality would be the Gateway. A gateway device could solve the

connectivity problem, e.g. if wireless technologies such as Bluetooth or Zigbee on the one

hand were to be used, the gateway on the other would provide communication with servers

(services, IoT platforms, Middleware ...) and other devices located on the other network.

Differences in the Cloud, Fog and Edge computing architectures are shown in Fig. 2 [8].

Fig. 2 Moving from Cloud computing over Fog to Edge computing [8]

Edge sensors and actuators are specific devices that most often do not have an OS, but

they are connected directly or through radio networks to the Edge devices or gateways [9].

The goal to be achieved is that all IoT devices can use Edge to integrate into the Cloud and

uniformly utilize all the resources available. In addition to the uniform use of available

resources, it is also possible to:

▪ ensure privacy: Data released from the device may be confidential, so it is better to

process that data at the point where it originates (closest to the data source), and only

those data that is security compliant (not security sensitive) are sent to the server for

processing.
▪ delay reduction: Machine learning algorithms that work directly on IoT devices

can be implemented on Edge.

166 D. BOGIĆEVIĆ

▪ connectivity: IoT devices can be equipped with different communication interfaces,
and by using Edge that has multiple communication interfaces, it is possible to extend
the communication capabilities of all devices.

▪ filtering: It is also possible to filter the data obtained from the sensors.
▪ pre-processing: It is possible to perform data processing and preparation for sending.

2.2. Streaming analytics

Streaming analytics is an approach to processing data, in which hidden information is
extracted from the data before it is sent to the Cloud. Small analytical algorithms can be
applied to this data to better utilize network resources [10]. They work on: router, switch,
gateway, server [11].

In IoT systems, there are a large number of events that need to be processed and make
an appropriate decision based on the analysis of the data obtained from those events.
Processing such data must be faster than their generation as events. Data analysis aims to
find events in the flow of data that is coming. Some of the features that streaming analytics
should provide are: Preprocessing, Alerting, Windowing, Joins, Errors, Database, Temporal
events and patterns, Tracking, Trends and etc. [4].

The features expected from data analysis and processing on the Edge [12] [13] are:
▪ to reduce the cost of sending data
▪ to reduce the amount of data being stored
▪ to determine when the data should be sent further for processing using analytical

model
▪ not to send data continuously, but at appropriate moments when certain conditions

are met
▪ to ensure data authorization and security
▪ to provide predictive analytics

Data processing closer to the source allows reduction of network load and delay. The
processing can be done on the devices themselves if they have the capability for analytical
processing, or on the closest device that can perform analytical processing of the received
data. The architecture of streaming data processing closer to the source is shown in Figure 3.
Companies such as Cisco, Intel, Dell propose their gateways as Edge data processing devices
[14]. The Edge side usually has an agent, which is configurable from a server (e.g. IoT
platform) [15].

Fig. 3 Edge streaming analytics architecture

 Improving Interent of Things parking systems 167

2.3. Apache Edgent

APACHE Edgent (former Quarks) [16] [17] is an open source Edge analytics model

for programming and execution on Edge devices that enables real-time analysis of data

flows on Edge devices or gateways. It is an open source project that represents a tool for

environment programming (lightweight runtime environment) for analytical data streaming

on Edge [18].

Use of this model achieves data analysis that starts from the end devices and goes to

the central parts. It is possible to send alerts to end devices from the central unit. It can be

run on devices such as the Raspberry PI (requires devices with a minimum of 512MB of

memory). It is made in Java but can be extended to other programming languages like

Swift, Scilab, Python.

Edgent accelerates your development of applications to push data analytics and

machine learning to Edge devices. (Edge devices include things like routers, gateways,

machines, equipment, sensors, appliances, or vehicles that are connected to a network.)

Edgent applications process data locally—such as, in a car, on an Android phone, or on a

Raspberry Pi—before it sends data over a network.

2.4. Smart parking: Related works

The problem of finding a parking space today is one of the problems that is common

in most cities. This issue is being addressed by a number of researchers exploring the

application of the IoT concept. The solution to the problem of occupying a parking space

can be grouped into one of four categories, namely: counting based, wired based, wireless

based and image processing based [19].

Sarker at al. [20] propose an architecture for parking with gateway and enable pre-

processing, compression, encryption, dynamic pricing on edge gateway device. They

proposed IR sensor, ultra-sonic rangefinder and magnetometer sensors to prove accurate

information in any weather conditions. The sensors send data via radio networks like BLE,

Nordic Semiconductor’s nRF end etc. All sensors send data to Raspberry Pi3 B+ edge

gateway device. Raspberry Pi3 B+ has an extra module to send data over LoRa gateway.

Misra et al. [21] designed solution for management of parking space. The focus of

this research was checking is the vehicle parked correctly and monitoring a number of

vacant spots. They used NodeMCU ESP8266 with ultrasonic sensor (HC-SR04) and IR

sensor (FC-51). In case that the car is obstructing the space of another vehicle, the system

will produce an alert to inform the gatekeeper or owner to take some action. All

information about occupation are stored in the database and send to a central server.

Khanna and Anand [22] presented a solution for booking a parking slot. Parking place

in this case is equipped with ESP8266 modules. Each module can be connected to

sensors like IR, PIR and Ultrasonic Sensors. The modules are sending data over a WiFI

network to a Raspberry Pi3 gateway which communicate over the MQTT protocol with

the IBM MQTT server. This server is a public server, and enable mobile application to

exchange data, and booking a parking slot.

Thangam et al. [23] used Raspberry Pi with camera in Facial Recognition and

recognition of car license plate in their parking systems. They developed a mobile

application for booking parking slot which enable to parking slot be saved for driver who

booked it. In case that a driver’s face and license plate are detected, then it has enabled

the driver to park a car. They used an OpenCV library for creating data sets.

168 D. BOGIĆEVIĆ

There are researchers like Fedchenkov et al. [24] who do research on implementing

AI to IoT Parking Solution. They used AI to forecast the availability of parking slots.

Using data set with information about parking occupation and timestamp they created

trained neural networks with root-mean-square error of 3.5%. Such a trained network is

used to give drivers information where is the best parking place. This information is

based on distance from the parking place and prediction system of occupying. Researchers

used the Keras library which provides tools for building and learning neural networks,

and the software product TensorFlow as a backend.

3. PROPOSED SOLUTION OF THE IMPROVED PARKING SYSTEM

Most smart parkings focus on the number of vacancies, as well as on the problem of

booking them. This paper demonstrates the possibility of deploying Machine learning in

IoT systems by using data streaming processing closer to the data source. The paper

describes a possible solution for entering and arranging vehicles in a parking lot with a

large number of sensors used to identify the occupancy of the parking space.

Data is collected from sensors at the entrance and from sensors at each parking space.

The sensors located at the entrance are appointed as in Figure 4. Based on these data, the

length (A), width (C) and height (D) of the vehicle are obtained.

Fig. 4 Parameters used for classification

By using these dimensions, classification is made and the vehicle is directed to the

appropriate parking lot. Some of the ways to check parking space occupancy are described

in chapter two of this paper. The focus of the paper is not on processing the information

from the sensors that are in parking places.

Vehicles can be identified by image processing. License plates can be obtained by

image analysis. Based on the picture, it would also be possible to identify the vehicle by

recognizing the manufacturer and the model of the vehicle. There are libraries that can be

used to identify vehicle license plates such as OpenALPR.

The solution proposed in this paper is based on the processing data from sensors located

at the entrance of the parking lot. Sensor data is sent when the read value is different from

the initial value (initial values are l, d, h as shown in Figure 4). Information about the

length, width, height of the vehicle is derived from the formulas C = d-sl-sr, A = l-lf-lr, D =

h-ht. On the basis of these data, the classification of vehicles is made as in Figure 5.

 Improving Interent of Things parking systems 169

Fig. 5 Determining the vehicle segment and directing it to packing

All data obtained from the parking lot is sent to the local gateway, which performs their
processing. The gateway processes streaming data from the sensors to detect events of interest
and further processing. After the event is detected, the vehicle is classified into one of the
official European segments (in this example, a shortened list of vehicle segments will be
used). When the segment the vehicle belongs to is recognized, the place where the vehicle
should be parked is shown. An illustrated flow of information is shown in Figure 6.

Fig. 6 Data flow

This processing should be fast in order to immediately inform the driver of which
parking space to go to. In order to achieve the highest possible speed, information
processing is done as close as possible to the source. The necessary information is sent to
the server through which the occupancy information is available to the users. In this
example, a shortened list of vehicle segments will be used.

In proposed solution we create system which knows how much space it has and to be
aware what kind of car is coming. According to that information we want to route the car
to suitable parking slot. In related works we can see that the main focus for the most
research was to find parking slot and booking it. Some authors use approaches like AI,
EDGE computing, optimization of parking slots. Comparison of related works with
proposed solution is shown in Table 1 and it is made on the following criteria:

▪ Occupancy - does the system have information about each parking slot?
▪ AI - does the system use AI?
▪ EDGE architecture - is the system organized as EDGE computing architecture?
▪ Optimization of parking slots - does the system have any optimization mechanism

for parking space?

170 D. BOGIĆEVIĆ

Table 1 Comparison of proposed solution with relation works

 Occupancy EDGE AI Optimization

Sarker at al. [20] + + - -

Misra at al. [21] + - - +

Khanna at al. [22] + + - -

Thangam at al. [23] + + + -

Fedchenkov at al. [24] + + + -

Our proposed solution + + + +

Form Table 1 we can make some conclusions. Every paper takes care about occupancy,
and there is a tendency to EDGE architecture. There are also AIs, but with lower frequency.
Optimization is supported only in one paper but in that paper there is no EDGE architecture
and there is no usage of AI. The solution proposed by this paper connects EDGE architecture,
AI and optimization of parking space, in what is step forward from related papers.

The research is divided into two phases. The first phase involved preparing data and
selection of a convenient machine learning algorithm. During this phase, one-dimensional
(length), two-dimensional (length and width) and three-dimensional (length, width and
height) classification was attempted. In the second phase the selected algorithm was used
to process the data from a real sensor.

4. IMPLEMENTATION OF THE PROPOSED SOLUTION

To train machine learning model, we used data set with 154, 1867, 3313 car models that

were classified into 7 segments. As the segments to which the vehicle may belong are defined,

we have chosen a group of supervised machine learning algorithms. Available information for

training are: the segment to which the vehicle belongs, the length, width and height of the

vehicle. The dimension range by each segment is shown in the Table 2, and the overlapping of

the dimensions is graphically presented in Figure 7.

Table 2 Maximum and minimum dimension by each segment

 A B C D E F J

LENGTH
MAX 3828 4549 4702 504 5113 5462 5205

MIN 2500 3575 4025 4262 4490 4984 3962

WIDTH
MAX 1720 1850 2033 1877 1911 1949 2030

MIN 1475 1610 1680 1726 1707 1855 1658

HEIGHT
MAX 1700 1678 1667 1526 1559 1501 1983

MIN 1455 1397 1350 1369 1365 1398 1460

Fig. 7 Overlapping of the dimensions

 Improving Interent of Things parking systems 171

A value for length can occur in 3 segments, and there is no segment that has a unique
value range. For width we have an overlap which for some values can be 5 segments.
Height can appear in all 7 observed segments.

For data analysis, we opted for Supervised learning algorithms. Collected data were
adapted to machine learning algorithms, and corresponding datasets were formed. As
Supervised algorithms were used, training of each algorithm was performed. The next
step was testing. The results are presented in the Table 3.

Table 3 Results of tested algorithms

Algorithms

d
im

en
si

o
n

al

T
ra

in
in

g
 s

et

Training set

Measurement error
(9335 items)

max-10mm max-20mm max-30mm

Decision tree
(C 4.5)

one
154 82.47% (127) 65.20% (6086) 63.89% (5964) 62.67% (5850)

1867 92.29% (1723) 66.76% (6232) 60.62% (5659) 57.99% (5413)
3313 78.06% (2586) 58.18% (5431) 54.59% (5096) 52.60% (4910)

two
154 92.86% (143) 72.84% (6800) 71.37% (6662) 69.53% (6491)

1867 97.64% (1823) 80.44% (7509) 73.44% (6884) 68.58% (6402)
3313 92.85% (3076) 70.36% (6568) 62.28% (5814) 58.01% (5415)

three
154 96.10% (148) 80.63% (7527) 79.29% (7402) 77.80% (7263)

1867 98.87% (1846) 90.12% (8413) 85.88% (8017) 81.18% (7578)
3313 97.01% (3214) 83.74% (7817) 79.96% (7464) 76.69% (7159)

Random forests

one
154 100% (100) 63.01% (5882) 60.47% (5645) 58.54% (5465)

1867 95.45% (1782) 62.67% (5850) 58.31% (5443) 56.10% (5237)
3313 83.55% (2768) 53.26% (4972) 50.17% (4684) 47.88% (4470)

two
154 100% (100) 73.94% (6902) 72.43% (6761) 70.83% (6612)

1867 99.68% (1861) 83.32% (7778) 75.17% (7017) 70.18% (6551)
3313 99.18% (3286) 73.37% (6849) 64.30% (6002) 59.54% (5558)

three
154 100% (100) 81.06% (7567) 80.06% (7474) 79.19% (7392)

1867 99.89% (1865) 94.57% (8829) 89.30% (8337) 85.26% (7959)
3313 99.64% (3301) 90.11% (8412) 83.89% (7831) 80.45% (7510)

Logistic
regression

one
154 74.02% (114) 57.76% (5392) 57.87% (5402) 57.68% (5384)

1867 65.72% (1227) 66.26% (6185) 66.36% (6195) 66.35% (6194)
3313 83.55% (2768) 66.26% (6185) 50.18% (4684) 47.88% (4470)

two
154 85.06% (131) 71.18% (6645) 69.94% (6529) 67.84% (6333)

1867 75.95% (1418) 75.85% (7081) 74.80% (6983) 73.66% (6876)
3313 63.00% (2087) 63.18% (5898) 62.38% (5823) 61.38% (5730)

three
154 92.86% (143) 78.39% (7318) 77.40% (7225) 76.48% (7139)

1867 86.12% (1608) 85.35% (7968) 84.27% (7867) 82.41% (7693)
3313 75.28% (2494) 77.41% (7226) 77.27% (7213) 76.09% (7103)

Mlp

one
154 74.68% (115) 59.88% (5590) 59.80% (5582) 59.53% (5557)

1867 68.24% (1274) 68.20% (6366) 68.40% (6385) 68.23% (6369)
3313 55.24% (1830) 65.80% (6142) 65.11% (6078) 64.90% (6059)

two
154 85.71% (132) 72.96% (6810) 72.06% (6727) 70.37% (6569)

1867 78.52% (1466) 77.25% (7211) 75.00% (7001) 72.89% (6804)
3313 63.08% (2090) 64.72% (6042) 63.52% (5929) 62.69% (5852)

three
154 92.21 % (142) 74.52% (6956) 74.72% (6975) 73.76% (6885)

1867 87.47% (1633) 86.71% (8094) 84.50% (7888) 82.22% (7675)
3313 76.76% (2543) 81.30% (7589) 79.25% (7398) 76.89% (7178)

The second phase was providing streaming data processing and spotting a complex
event. The problem to be solved was how to obtain the dimensions representing the
dimensions of the vehicle from the flow of data from all the sensors located at the

172 D. BOGIĆEVIĆ

entrance. Apache Edgent was used to process streaming data and detect complex events.
Data came from an Arduino Nano board to which a HC-SR04 sensor for distance
measuring was attached.

5. TESTING AND EVALUATION OF THE PROPOSED SYSTEM

For research purposes, an application has been developed that simulates data from sensors

used to determine length and width. Height information is obtained from the physical device.

Data from the physical sensor is sent to the application that simulates other sensors. Simulated

data is sent via WiFi to another application located on RPi. For the sake of simplicity, the data

from the sensor goes to the mid-application in the example. In real use, the data from the

sensor would go directly to the gateway. The layout of the application from which the real and

simulated data is sent is shown in Figure 8.

Fig. 8 Application for generating sensors data and pass real data

Data from all sensors arrive at the gateway where the processing takes place. Streaming

data processing gives information about the length, height and width of the vehicle. The

gateway application determines to which segment the vehicle belongs, and directs the vehicle

to the appropriate parking lot. The layout of the application is shown in Figure 9. The

application runs in the background and graphically displays the data coming from the sensors

and the result of their processing. When the vehicle in question is concluded based on the

dimensions, data is sent to the lower devices. The lower device shows the segment to which

the vehicle belongs, and where the vehicle should be parked.

Fig. 9 Gateway application for streaming processing data, calculating segment of vehicle

and device for informing user

 Improving Interent of Things parking systems 173

In the research, a classic programming technique was used based on data from Table 2 and

Figure 7. The result of accuracy when using the classic programming goes from 65% to 73%

depending on the measurement error. Soft computing gets better results, compared with the

result from the classic programming. In both techniques there is a probability of mistake.

 6. CONCLUSIONS

Processing data in real-time is one of basic requirements of IoT. The one solution is to

use Edge computing, which is described in the paper. Using Process engine and analytics

on Edge devices such as gateways can reduce server latency and processing power. The

cost of the entire system is reduced. An architecture suitable for processing large amounts

of data and processing in approximately real time is achieved. By using RPi as a gateway

device, we can increase the connectivity reflected in connecting multiple types of networks.

By adding artificial intelligence, these devices become aware of received data and can learn

from them. By further improving the training set, it is possible to increase accuracy.

Further research could go towards the use of genetic algorithms. By applying genetic

algorithms, it is possible to increase the utilization rate of parking lots and improve their

organization. Also, another direction for further research could be applying this approach to

highway tolling.

REFERENCES

[1] Vehicle size class. [Online]. Available:

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Vehicle_size_cla

ss.html [Accessed on June 2020].
[2] Why the Internet of Things needs Artificial Intelligence. [Online]. Available: https://www.iot-now.com/

2019/03/12/93908-internet-things-needs-artificial-intelligence/, [Accessed on June 2020].

[3] Ryszard Tadeusiewicz, Rituparna Chaki, Nabendu Chaki, "Exploring Neural Networks with C# ", CRC
Press,US,2015.

[4] Perry Lea, "Internet of Things for Architects", Packt Publishing Ltd., Birmingham, UK, 2018.

[5] Nishith Pathak, Anurag Bhandari, "IoT, AI, and Blockchain for .NET", Apress,2018.
[6] Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn & TensorFlow", O’Reilly, US,2017.

[7] Stuart J. Russell and Peter Norvig, "Artificial Intelligence A Modern Approach Third Edition", Pearson

Education, US, 2010.
[8] Redowan Mahmud, Ramamohanarao Kotagiri, Rajkumar Buyya, "Internet of Everything", Springer,

pp.103-130, 2017.

[9] Roy Want, Bill N. Schilit, and Scott Jenson, "Enabling the Internet of Things", IEEE, 2015.

[10] Foteini Beligianni, Miltiadis Alamaniotis, Athanasios Fevgas, Panagiota Tsompanopoulou, Panayiotis

Bozanis, Lefteri H. Tsoukalas, "AN INTERNET OF THINGS ARCHITECTURE FOR PRESERVING

PRIVACY OF ENERGY CONSUMPTION", IET, 2016
[11] Rajkumar Buyyaа, Amir Vahid Dastjerdi, "Internet of Things Principles and Paradigms", Elsevier, 2016.

[12] Apache Edgent Overview, [Online]. Available: https://Edgent.apache.org/docs/home [Accessed on June

2020].
[13] Julian Ereth, Edge Analytics in the Internet of Things, [Online]. Available: https://www.eckerson.com/

articles/Edge-analytics-in-the-internet-of-things [Accessed on June 2020].

[14] Edge Analytics – The Pros and Cons of Immediate, Local Insight, [Online]. Available: https://www.talend.
com/resources/Edge-analytics-pros-cons-immediate-local-insight/ [Accessed on June 2020].

[15] Getting started with Edge Analytics in Watson IoT Platform, [Online]. Available: https://developer.ibm.

com/recipes/tutorials/getting-started-with-Edge-analytics-in-watson-iot-platform/ [Accessed on June 2020].
[16] Getting started with Apache Edgent, [Online]. Available: https://Edgent.apache.org/docs/old-Edgent-getting-

started [Accessed on June 2020].

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Vehicle_size_class.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Vehicle_size_class.html
https://www.iot-now.com/2019/03/12/93908-internet-things-needs-artificial-intelligence/
https://www.iot-now.com/2019/03/12/93908-internet-things-needs-artificial-intelligence/
https://arxiv.org/search/cs?searchtype=author&query=Mahmud%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Kotagiri%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Buyya%2C+R
https://www.eckerson.com/experts/julian-ereth

174 D. BOGIĆEVIĆ

[17] Quarks Renaming Discussion - Now Apache Edgent, [Online]. Available: https://cwiki.apache.org/confluence/
display/EDGENT/Quarks+Renaming+Discussion+-+Now+Apache+Edgent [Accessed on June 2020].

[18] Apache Edgent Overview, [Online]. Available: https://Edgent.apache.org/docs/home [Accessed on June 2020].

[19] Luis Ostiz Urdiain, Carlos Pita Romero, Jeroen Doggen, Tim Dams, Patrick Van Houtven, "Wireless
Sensor Network Protocol for Smart Parking Application Experimental Study on the Arduino Platform",

The Second International Conference on Ambient Computing, Applications, Services and Technologie,

AMBIENT 2012.
[20] Victor Kathan Sarker, Tuan Nguyen Gia, Imed Ben Dhaou, Tomi Westerlund, "Smart Parking System

with Dynamic Pricing, Edge-Cloud Computing and LoRa", Sensors, 2020.

[21] Rohit Misra, Shekhar Jain, Mihir Bonde, Harish Motekar, "IoT Enabled Smart Parking System",

International Research Journal of Engineering and Technology, 2019.

[22] Abhirup Khanna, Rishi Anand, "IoT based Smart Parking System", International Conference on Internet

of Things and Applications, Pune, India, 2016.
[23] Cassin Thangam, M. Mohan, J. Ganesh, C.V. Sukesh, "Internet of Things (IoT) based Smart Parking

Reservation System using Raspberry-pi", International Journal of Applied Engineering,2018.

[24] Petr Fedchenkov, Theodoros Anagnostopoulos,Arkady Zaslavsk, Klimis Ntalianis, Inna Sosunova and
Oleg Sadov, "An Arti fi cial Intelligence Based Forecasting in Smart Parking with IoT", Springer Nature

Switzerland, 2018.

[25] Eben Upton and Gareth Halfacree, “Raspberry Pi User Guide, Wiley”, United Kingdom, 2016.
[26] RPiSpec, [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/

[Accessed on June 2020].

[27] The Arduino Playground , [Online]. Available: https://playground.arduino.cc/ [Accessed on June 2020].

https://cwiki.apache.org/confluence/display/EDGENT/Quarks+Renaming+Discussion+-+Now+Apache+Edgent
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://playground.arduino.cc/

