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Abstract. The main goal of this paper is to present novel technologies that can contribute 

to safety, competitiveness, efficiency and operational reliability of Railway infrastructure 

through the development of innovative solutions for measuring and monitoring of railway 

assets based on machine vision. Measuring the transversal position of the wheels on the 

rail, as well as identification of the defects of the wheel and the rail (such as deformation 

of rail head edge, lateral wear, worn wheels, cracks in wheel and rail, rolling contact 

fatigue, corrugation and other irregularities) can increase reliability and lower maintenance 

costs. Currently, there is a need on the market for the innovative solution, namely the on-

board high-speed stereo camera system augmented with a system that projects custom 

pattern (fringe scanner system) for measuring the transversal position of the wheels on the 

rail, robust to environmental conditions and waste along the track that can provide 

reliable measurements of transversal position of the wheels up to 200 km/h. New trends in 

Precise Industrial 3D Metrology are showing that stereo vision is an absolute must have 

in modern specialized optical precision measuring systems for the three-dimensional 

coordinate measurement. 
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1. INTRODUCTION 

One of the ways to increase the efficiency and operational reliability of the existing 
Railway infrastructure is to automate the inspection activities as well to increase the 
unification and increase the monitoring and measuring scope of systems currently available. 
Visual inspections of vehicles and infrastructure are currently preformed manually by the 
maintenance staff which is a time and cost consuming process. Current measuring and 
monitoring solutions focus predominately on determination of specific set of defects and their 
quantification which aggravates the fusion of measurement data for the vehicle as a whole, or 
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for the infrastructure as a system. Furthermore, the effects of rolling stock defects on the 
infrastructure are not clearly established which hampers the infrastructure maintenance 
planning [1, 2].  

In order to maintain competitiveness with other means of transport it is necessary to 
accept Industry 4.0 trends and advances in the terms of gathering more data for better 
predictive maintenance planning as a component of a larger asset management strategy to 
diagnose, prevent and postpone failures. Such an approach lowers the number of service 
disruptions, enables the timely preparation of parts and maintenance staff and decreases 
costs over routine or time-based preventive maintenance because maintenance activities 
are performed only when necessary. The definition of models which quantify the impact 
of measured defects to the infrastructure enables the shift to proactive maintenance as the 
root causes of infrastructure wear and failure can be predicted and eliminated before any 
measurable damage occurs. Monitoring wheelsets and particularly wheels in service 
significantly increases the reliability and reduces maintenance costs. Also, due to 
regulations (UIC 660, 2002) to allow power and speed to be reduced in the event of 
instability, high-speed rolling stock must be fitted with an approved system for detecting 
the bogie instability on a permanent basis. It is acceptable for the system to be activated 
only when running at speeds higher than 220 km/h (i.e. for high/speed operations). 

It is one of the key requirements to enable the calculation of fatigue and wear levels 
of the wheel and the rail. Better prediction to the wheel and rail fatigue and wear enable 
the predictive maintenance of the noted components as the most important component of 
a railway system. A better control of wheel and rail wear also leads to a decrease of 
overall dynamic forces which act on the rolling stock thus increasing their service life as 
well as decreasing the costs related to maintenance. 

Railway wheels sit on the rails without guidance except for the shape of the tyre in 
relation to the rail head. Contrary to the popular belief, the flanges should not touch the 
rails. Flanges are only a last resort to prevent the wheels becoming derailed – they are a 
safety feature. The wheel tyre is coned and the rail head slightly curved as shown in the 
following diagram (Figure 1a) [1]. 

    
Fig. 1 The shape and location of wheels and rails on straight track (a) and location of the 

wheels in relation to the rails on curved track (b) 
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This diagram is exaggerated to show the principle of the wheel/rail interface on a 

straight track. Note that the flanges do not normally touch the rails. 

The motion of the wheel on the rail on the straight track is called a "sinusoidal ride". 

This is presented in Figure 2 [1].  

 

Fig. 2 Sinusoidal motion of wheelset on straight track 

On a curved track, the outer wheel has a greater distance to travel than the inner 

wheel. To compensate for this, the wheelset moves sideways in relation to the track so 

that the larger tyre radius on the wheel cone is used on the outer rail of the curve, as 

shown in Figure1-b. 

The inner wheel uses the outer edge of its tyre to reduce the travelled distance during 

the passage round the curve. The flange of the outer wheel will only touch the rail if the 

movement of the train round the curved rail is not in exact symmetry with the geometry 

of the track. This can occur due to the incorrect speed or poor mechanical condition of the 

track or train. 

There will always be some slippage between the wheel and rail on curves, but this 

will be minimised if the track and wheel are both constructed and maintained according 

to the prescribed regulations. 

2. MEASUREMENT OF THE WHEEL-RAIL CONTACT 

Precise measurement of the transversal position of the wheel in relation to the rail can 

lead to a better prediction of the wheel and rail fatigue and wear. These predictions are 

enabling the predictive maintenance of the noted components as the most important 

component of a railway system. A better control of the wheel and rail wear is also leading 

towards decreasing of overall dynamic forces which act on the rolling stock thus 

increasing their service life as well as decreasing the costs related to the maintenance. 

Researchers were mainly dealing with problems considering wheel/rail contact forces.   

Matsumoto et. al. [1] have presented a new measuring method for the wheel–rail 

contact forces that can measure contact forces without special wheelsets equipped with 

strain gauges and slip rings or telemeters. In this method the lateral contact force is 

measured from the lateral distortion of a wheel measured directly by several non-contact 

gap sensors. Normal and longitudinal contact forces are also measured from the deflection of 

spring or the strain of parts of the bogies except wheelsets. 

In [2] non-contact gap sensors were equipped on non-rotating parts of a bogie, and a 

new measuring method of wheel/rail contact forces has been developed. The developed 

system has been verified to have the sufficient durability for continuous measurement on 
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in-service trains and the sufficient practical accuracy after various stand tests and train 

running tests. After a long-period of continuous measurement on a commercial subway 

line, some important characteristics of wheel/rail contact mechanics were found by the 

analysis of measured data. 

Wheel/rail contact forces of high-speed train are very difficult to measure directly and 

some researchers are dealing with the estimation of this force. Zhu et al. [3] a time-

domain inversion method for dynamic loads was proposed. Based on the state space 

equation, dynamic programming methods and the Bellman principle of optimality, the 

main theoretical derivation of the inversion mathematical model was given. With a high-

speed vehicle system as the research object, accelerations of axle box as input conditions, 

the vertical and horizontal wheel/rail forces were identified.  

This contact force was estimated by Wei et al. [4] by the measurement of the wheel 

set flange derailment. An indirect method for wheel/rail force measurement was proposed 

in this paper, while comparison of the force time history applied to the instrumented 

wheel set and that obtained using the indirect method is presented. 

Bagheri et al. [5] are dealing with optimal strain gauge placement in an instrumented 

wheelset for measuring wheel-rail contact forces. For measurement of the contact forces 

an instrumented wheelset has been developed and a novel technique for precise design of 

the instrumented wheelset is presented in this paper. Influences of various factors such as 

the wheel rotation, the temperature or the centrifugal force are eliminated by cancelation 

of the higher harmonics while the accuracy of estimated forces is dependent on the 

placement of gauges on the instrumented wheelset. 

The system for assessment of the wheel-rail contact forces can be used for multiple 

purposes, among them for estimation of the train running safety, for train axle load 

measuring or wheel flats detection, as well as for the other research analyses. As the wheel-

rail rolling contact moves along the track during train motion, it is very difficult to establish 

a reliable and accurate system for measuring of contact forces. The measurement principle 

of the wayside system, presented by Milkovic et al. [6] is based on rail strains measurements 

using strain gauges, connected into the Wheatstone bridges in a smart way, in order to 

achieve a signal proportional to the applied load. This principle uses an independent 

component analysis (ICA) model in combination with the system calibration for the 

successful separation of vertical and lateral contact forces from the recorded strain signals. 

In addition, the system provides identification of the contact point position on the rail 

during train passing over it, which further expands the possibilities of its application to 

wheel-rail wear analysis, contact geometry optimization etc. 

Introducing the measurement of the dynamic change of t he transversal position of the 

wheel in relation to the rail into the simulation model used for wheel/rail force estimation 

can improve the estimator performance. Since all the researchers dealing with the wheel 

and rail contact forces agree that a continuous measurement of these forces is extremely 

complicated, every feasible solution is based on some sort of estimation. The estimation 

of these forces is done by a complex simulation of rail and wheel dynamics, while some 

other forces and parameters are measured. The measured transversal position can be 

introduced either in a complex mathematical model, or in a simulation model in the 

specialized simulation software. This addition to the mathematical/simulation model can 

for sure improve the simulation accuracy and therefore the estimator performance. 

For measurement of the wheel-rail contact there are also on-track solutions used just 

for the wheel profile inspection. The interaction between wheels and rails is one of the 
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key factors affecting the dynamical behavior of rolling stock, and consequently, the 

safety and comfort of railway vehicles, so it is necessary to detect with high accuracy and 

frequency the different parameters of the wheels, and in particular the contact profile. The 

DWPM, DANOBAT’s latest generation of Wheel Profile Measuring Systems, is used for 

on-track wheel profile inspection system. 

  

Fig. 3 TTCI WRCI system [7] 

TTCI (Transportation Technology Center, Inc.) has developed an automated 

wheel/rail contact inspection (WRCI TM) system (Figure 3) using the Track Loading 

Vehicle or existing track geometry measurement cars (Wu 2006). A laser system installed 

in front of the leading truck of TTCI’s Track Loading Vehicle is used to measure the 

dynamic rail profiles. The rail profiles are measured as the car moves along the track. 

TTCI’s approach is to match measured rail pairs against wheels typical of the vehicles 

passing over, calculate the wheel/rail interaction, and assess against the preferred 

interaction. The data analysis software computes the contact parameters by placing each 

wheelset on the measured rail pair. The maximum operating speed for real-time data 

analysis can now reach up to 47 mph (75 km/h) with a processing interval of 10 feet (3 

m) by using multiple data processors. 

The rail/wheel contact measurement system determines (1) Contact angle–indication 

of flange climb risk, (2) Low rail contact position–indication of rail rollover, (3) High rail 

contact conformity–indication of bogie steering, (4) Conicity–indication of high speed 

lateral stability, (5) Rolling radius difference–indication of bogie steering, and (6) 

Contact stress–indication of rolling contact fatigue risk. 

The company Deutzer Tehnische Kohle (DTK, [8]) is offering Wheel-Rail contact 

measurement system as a product (Figure 4). 

The system for detection of the wheels position to the rail is adaptable to customers’ 

specific needs. It is used for measurement of the distance between the wheel and the rail. 

All measurement data are synchronized with videos and Audio comments at salient way 

points and as a result customer can have a detailed measurement report. 

The distance measuring results are very accurate when measuring wheel and rail 

contact with only one laser unit. Points where the wheel is climbing up the rail can be 

detected very easily to avoid derailing. Optionally the track geometry and the rail profile 
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can be recorded, exact coordinates for every position with GPS or dGPS can be recorded. 

The system provides distance between the Wheel and the Rail for both sides. 

 

Fig. 4 DTK Wheel-Rail contact measurement system [8] 

The DTK track geometry measurement system is another commercial product of the 

same company that logs the entire track geometry and track profiles for regular rail 

services. Variables captured during measurement are gauge, groove width, groove depth 

or railhead height, current contour of rails (wear), track cant, twisting, yaw angle, ramps, 

longitudinal level, alignment, curve radius, shocks between wheel and rail, smooth 

running of axle on the rails (loosening of rails), position on the route (GPS coordinates 

and route) and speed. Optionally, this system can include the Rail-wheel contact. The 

track geometry is obtained under load on the standard passenger rolling stock of the 

relevant transport operator. Even while still on the measurement journey, a first 

impression can be obtained of the platform geometry since the measurement data is 

displayed on monitors. After a second measurement the measurement campaigns can be 

compared to one another to determine changes in the track geometry or in the contours. 

This provides information on how the wear of the infrastructure has developed. DTK 

evaluation software enables customer to determine all deviations above and below the 

specified measurement tolerances. To evaluate wear, for each chosen route position the 

current contour of the rails can be displayed and compared with the ideal contour.  

BVSYS [9] as a commercial product has a specialized measuring system 

3rdRailPositionCheck. This measuring system allows the real-time, automatic 

measurement of the lateral position and height of the contact rail relative to the side rail. 

3rdRailPositionCheck is an automatic real-time measuring system to determine the 

position of contact rails on tracks. Measurement reports are generated as a result that 

shows the deviations of the contact rail’s position from the set position and generate an 

error message if tolerances are exceeded. In the basic version, the system works up to a 

speed of 130 km/h at a measurement interval of 10 cm, while higher speeds and shorter 

intervals are possible depending on the requirements. 

The measuring system is based on the split-beam method and in each case consists of a 

line laser and a camera. A laser line projected onto the rail is recorded by means of a special 
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digital camera. Powerful computers automatically evaluate the image data and generate the 

reference points necessary for the relevant position. Using these reference points, which are 

generated by four sensor units, the position of the 3rd rail is calculated relative to the side rail. 

Figure 5 shows the principle of measurement, while Figure 6 shows the measured values 

by the 3rdRailPositionCheck. 

 

Fig. 5 Principle of measurement by BVSYS 3rdRailPositionCheck [9] 

 

Fig. 6 Measured Values by BVSYS 3rdRailPositionCheck [9] 

There is another BVSYS product ProfileCheck, a high-precision optical measurement 

system for the contactless inspection of vertical and cross-sections of railway tracks at a 

speed of over 200 km/h (Figure 7). The system is used for the early detection of rail damage in 

areas of the running edge and rail surface thereby enabling reprofiling of the rails at an 

early stage, which increases the lifetime considerably. 

The system is based on the measuring principle of contactless laser triangulation. 

Thanks to a new, patented method, the measurement data is detected especially during 

the vertical section measurement independent of movements of the sensor in relation to 

the rail. As a result of this, short and long waves can be measured on the track with the 

highest precision and quantified with regard to the amplitude part. The cross-section 

measuring system is used for the precise measurement of the rail head as well as the 

gauge. The system is able to record and evaluate a complete rail cross-section every 

0.096 m at a speed of 160 km/h. During the inspection run, the gauge, the amplitudes of 
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the corrugation and waves as well as the rail head section are displayed visually online. In 

the fault protocol that is created, faulty track areas are identified to the exact metre by 

means of the track correlation through the chainage that runs in parallel. 

 

Fig. 7 BVSYS ProfileCheck operating principle [10] 

The system is scalable to a speed of up to 320 km/h, it has high measuring precision, 

it is easily operable with an intuitive controllable user interface. The modular concept of 

the measuring system allows low maintenance cost, easy integration thanks to small 

space requirements both under and in the vehicle. It is an open system; thereby easy for 

adaption to country-specific database systems or central data acquisition on the vehicles. 

3. MACHINE VISION IN RELIABLE WHEEL-RAIL CONTACT MEASUREMENT 

The on-board system for measuring the transversal position of the wheels on the rail 

can be based on the high-speed camera pair (stereo pair) augmented with the pattern 

projecting technology (fringe scanner system). Grid/pattern projected onto the wheel/rail 

interface can then be recorded by means of a high-speed stereo camera system. Stereo 

image data should be processed by an integrated computer to reconstruct the 3D point 

cloud of the wheel/rail interface and generate the reference measurement points for the 

determination of the transversal position of the wheel on to the rail. Such a solution with 

a GPU accelerated low power system board, which will enable the sensor connection and 

processing, can provide reliable measurements of the transversal position of the wheels. 

The application of a high speed camera with up to 5000 FPS will enable the system 

functioning even at speeds greater than 200 km/h. As the system is primarily based on 

vision sensors, aside of its primary function (measuring the transversal position of the 

wheels on the rail) it can be able to identify the defects of the wheel and the rail such as 

the deformation of the rail head edge, lateral wear, worn wheels, cracks in wheel and rail, 

rolling contact fatigue, corrugation and other irregularities. 

New trends in Precise Industrial 3D Metrology are showing that the stereo vision is an 

absolute must have in modern specialized optical precision measuring systems 

(www.gom.com) for the three-dimensional coordinate measurement. With high speed 



 Towards Machine Vision Based Railway Assets Predictive Maintenance 133 

cameras with the frame rate up to 20000 (http://www.phantomhighspeed.com/, V2640) 

and GPU accelerated low power board, precise measurement and 3D reconstruction is 

possible for speed of the moving train much higher than 200 km/h.  

When considering stereo-vision based systems, two cameras, displaced horizontally 

from one another are used to obtain two differing views on a scene, in a manner similar to 

the human binocular vision. In general, two types of methods are used to interpret the 

data obtained from stereo vision sensors in driver assistant systems: 

▪ Disparity maps 

▪ Inverse Perspective Mapping (IPM) 

Although computation of a disparity map is time consuming, Mandelbaum et al. [11] 

shows that it can be done real-time. A review on different methods of depth estimation 

using stereo camera system can be found in [12]. In general, in disparity maps, positions 

of pixels on both cameras that represent the same object are compared. The third 

component of the pixel vector (z coordinate) can be calculated by comparing changes in 

pixels position, while the inverse perspective mapping method is based on transforming 

the image and removing the perspective effect from it [13]. An early example of applying 

the inverse perspective mapping can be found in (Zhao et al. 1993), where the contours of 

the objects which stand above the ground are extracted from the images. 

Fraunhofer Institute for Applied Optics and Precision Engineering has developed a 

High-speed 3D-measurement system with gobo-projection [14]. It is a touchless optical 

3D measurement system with a triangulation-based 3D measurement. Stereo vision-based 

image acquisition using high-speed cameras and high-speed projection of aperiodic fringe 

patterns enables 3D measurements of highly dynamic situations and large measurement 

fields. The measuring principle with Gobo (Graphical optical blackout)-based high-speed 

Projection of fringe patterns with the use of high-speed cameras allows to record up to 

10,000 3D images /s. There are many papers dealing with the 3D stereo measurement 

with projection patterns [15, 16, 17, 18, 19].  

One of the needs for adequate functionality of the measurement of transversal 

position of wheel in relation to the rail system is insensitive to dust, rain, snow and ice. 

Housing IP68 protection will provide an adequate protection of components, but for the 

system to perform, an accurate and reliable measurement the automatic cleaning system 

must be introduced.  There are no similar systems for railway measuring devices, but 

most similar are the one used in automotive industry. In April 2017 the international 

supplier Continental introduced a new camera cleaning system where the cleansing water 

is directed at the camera lenses, where autonomous cleaning process is comfortable and 

safe. Google subsidiary “Waymo” also developed a self-cleaning mode for their sensors. 

Here the dome covering the lidar kit that sits atop the car is cleaned with water and small 

windshield wipers. The wipers emerge and spin around the dome until it is freed from the 

dirt. In 2015, Ficosa has launched a solution to clean the lenses of sensors and cameras 

integrated in the car automatically. Named Sensor & Camera Cleaning and patented by 

the company, this product removes dirt from cameras and sensors through a hybrid 

system that expels water and/or pressurized air depending on the need and lenses position, 

guaranteeing a proper performance in all operating conditions. 

The stereo camera pair and a laser beam (pattern) system (Figure 8) can be used to 

create 3D data (point cloud) that enables precise measurement of the transversal position 

of the wheel in relation to the rail. 
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Fig. 8 Proposed measuring system 

High-speed cameras with up to 5000 FPS will enable system functioning even at 

speeds greater than 200 km/h. At the highest speed of 200 km/h 55.6 m/s measuring 

system can record position of the wheel in relation to the rail every 0.011 m. Stereo 

camera pair enables continuous reliable point cloud reconstruction.  

The usage of stereo camera pair can also enable measuring system to detect cracks 

and deformations of both rail track and wheel by comparing the current with historical 

pictures of the surface (undamaged condition). For continuous reliable measurement in 

all conditions, the housing needs to have minimum of IP 65 rating and whole measuring 

system should be insensitive to dust, rain, snow and waste along the track, while a 

specialized cleaning system for the protective glass should be developed (inspired by the 

camera and lidar cleaning systems for automotive industry that uses cleansing water 

directed trough jets directly to protective glass that covers camera lenses). Pressurized air 

and linear wipers should be considered for the quick drying. 

Digital images of a contact line of a wheel and a track should be taken at a distance of 

10 cm, while framerate needs to be controlled by a rotary encoder. Thanks to the path-

dependent image recording and analysis, each measurement can be assigned a clear 

position on the track and on the wheel. The resulting images must be analysed and 

processed using a beyond state of the art image processing algorithms to reliably measure 

the transversal position of the wheel in relation to the rail and to create a 3D reconstruction 

of the track and wheel profiles. The proposed system will allow high measuring speed at a 

short measuring distance, high measurement resolution and certainty, high recognition 

performance and low maintenance.  
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4. CONCLUSION 

The proposed solution has several clear advances compared to the already available 

solutions, like precise measurement of transversal position of the wheel in relation to the 

rail with an on-board device; low power consumption; self-sustainability; identification 

of the wheel and rail defects by one device and auto-cleaning system that makes 

measurement insensitive to dust, rain, snow and waste along the track. 

So far there are no commercial solutions used for the continuous monitoring of 

transversal position of the wheel in relation to the rail other than DTK Wheel-Rail contact 

measurement system. However, the proposed solution has many advantages, like higher 

precision, lower power consumption, identification of wheel and rail defects and 

operability in hard condition (rain, snow, dust, ice) etc. The precision of proposed measuring 

device is high due to high speed stereo cameras. The algorithms for triangulation can be 

improved and adjusted to fulfil high performance demands and to enable adequate 

accuracy and reliability of measurement.  

Stereo camera pair should be focused on recording the contact of the wheel and the 

rail, but in acquired videos and reconstructed point cloud cracks and other irregularities 

will be visible and a system for fault detection of both rail and wheel can be integrated 

into the proposed solution.  
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