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Abstract. In this paper we study the accuracy of a single-rotor robotic small-scale 

helicopter flight along a complex path. The control algorithms for the autopilot are 

synthesized using the position-trajectory control approach. We use hardware-software 

complex to test the helicopter autopilot. The simulation in hardware-software complex 

is used to debug the autopilot software and complex study of autopilot control 

algorithms in early development stages without full-scale experiments. The paper 

shows results of the simulation of single-rotor small-scale helicopter flight. 
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1. INTRODUCTION 

A single-rotor helicopter with tail rotor is the most widely used rotorcraft vehicle. As 

the analysis of the existing solutions shows, this type of modern small-scale helicopters 

can fly only along linear trajectories and/or a path composed of a set of segments without 

correction by the operator. In this case, the synthesis of control algorithms for such systems 

is done using the methods of decomposition and linearization, while more complex 

trajectories require the consideration of multiple nonlinear model having complex 

distribution of forces and moments. In a simplified model of the helicopter dynamics 

unaccounted physical effects are presented in the form of perturbation which leads to 

degradation of control precision. 
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The analysis of the existing robotic helicopters control systems showed that hierarchical 

control systems are the most efficient algorithms, which include intelligent motion planner, 

multi-connected adaptive control regulator and intelligent takeoff/landing system. 

This paper considers nonlinear control algorithms for a single-rotor helicopter. The 

paper shows the peculiarities of synthesis algorithms. The assessment of the possibilities 

of such a system is given by the simulation results under wind disturbances. 

2. POSITION-TRAJECTORY CONTROL 

2.1. Position-trajectory control algorithm 

Position-trajectory control is widely used for controlling various vehicles [1]-[4]. The 

position-trajectory control method allows using a mathematical model of a mobile vehicle 

in the form of a system of nonlinear ordinary differential equations [5]. In a general form 

position-trajectory control algorithm has the form [6]: 
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where  the desired path is  described by equations of plane: 
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where an, i, j - coefficients, xg, Hg, zg - linear coordinates.  

The components of the control algorithm are described in [6]. In (1) the control is 

calculated as a vector of control forces and moments in body frame coordinate system: 
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Three problems were solved to apply the generalized algorithm of position-trajectory 

control to the helicopter. 

2.2. Control forces 

The equation is made to bring the control forces to actuators control. Expressions of 

the equivalent rotor theory are used to derive the equations of the inverse transformation 

[7]. Analytical expressions for the relations between the control forces and control channels 

collective pitch and engine speed, cyclic and collective pitch angle of the tail rotor were 

obtained: 
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where, 1, 2 are cyclic angles that are set by swashplate for pitch and roll, respectively; 

01, 02 are balancing angles on hover; Н, S are projections of A – full aerodynamic force 

of the main rotor; ATR – is full aerodynamic force of the tail rotor; 0 is collective pitch of 

main rotor; 0TR is collective pitch tail rotor; ω is angular velocity of main rotor rotation; 

TR is angular velocity of tail rotor rotation; R is main rotor radius; RTR is tail rotor radius. 

Using (4) is difficult because of the difficulty of obtaining projections and coefficients 

A and ATR. However, the conclusions are based on experimental observations, that the lift 

coefficient Ct can be considered as a linear function of the collective pitch on short 

segments of the flight. On the basis of this, we made the assumption that φ0 = kCt, where 

k is the proportionality coefficient.  

Now, when the constraint equations between the control forces and control channels 

are obtained, they have to be supplemented by formulas of transition to analog signals of 

the actuators in accordance with the construction, yet in this paper are not considered. 

2.3. Control constrains and control distribution 

Control constraints are determined in accordance with the technical capabilities of the 

helicopter. Restrictions are prepared by the technical documentation for the helicopter and 

its actuators. 

The problem of distributed control is solved, which is due to the fact that the number 

of control channels is fewer than the number of degrees of helicopter freedom. To solve 

this problem, it is proposed to use the logical expressions to specify the order of application of 

the control actions: 

If (minlim    maxlim ) and (minlim    maxlim ) are true, then we substitute H = Fux, 

S = Fuy, and A = Fuz in (4), else 
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Where, Fux, Fuy – are longitudinal and lateral  projections of control force, Fuz, Muz – the 

projection of force on the vertical axis and moment on the yaw; L – length from center of 

mass to main rotor hub, LTR – tail boom length; θ, γ – pitch and roll angles, with min/max lim  

indexes restrictions on the allowable angles  written. These angles depend on the flight mode 

and balancing angles. We use θ = 2, γ = 3 degrees  in the vertical flight mode for small-scale 

single rotor helicopter and 8    8, 5    8 in the horizontal flight mode. 
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Autopilots that are based on linear control algorithms with decomposition of single 

rotor helicopter dynamics model use special actuators control logic. This is because the 

multicoupling of control channels is required to be compensated. The typical actuators 

control logic: 

 
0 1 2 0, РВ РВ       .  (5) 

According the actuators control logic the regulation of 0 lead helicopter to heading 

change and lateral displacement. The displacement is compensated by 1, 2, that are 

calculated in the previous step. Finally, 0PBPB are used to compensate for the heading 

change, but this leads to altitude loss. 

Using position-trajectory algorithms in autopilot allows to avoid actuators control 

logic, the multicoupling of control channels is automatically involved in nonlinear helicopter 

dynamics model. 

The next step is the verification of the control algorithms. 

3. HARDWARE-SOFTWARE COMPLEX AND SIMULATION 

3.1. Hardware-software complex description 

Hardware-software complex is designed to research the functioning of the control 

algorithms in the closed system. The block diagram of hardware-software complex is shown in 

Fig. 1. 

 
Fig. 1 The block diagram of hardware-software complex  

for research helicopter autopilot type 

In this block diagram flight simulator, autopilot and interface unit are computer programs 
(Fig. 2). But actuators simulation block is a hardware device (Fig. 3). 

The flight simulator is the computer program for pilot training. As a part of hardware-
software complex flight simulator AerosimRC [8] is used for research and testing autopilots 
and navigation information filtering algorithms in the laboratory. 

Autopilot and scheduler  is a computer program with a graphical user interface. It 
implements the control algorithms, interfaces to the connection block and actuators 
simulation block, as well as the function parameter registration of helicopter flight and 
on-board systems. It allows objective tests of the functionality of the autopilot [9]. 

Connection block is a dynamical linked library (software), which is used to connect to 
flight simulator. Connection block is used to send navigation data from flight simulator to 
autopilot. The user can specify frequency of navigation data. 
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3.2. Simulation 

In this study we use simulation in hardware-software complex to test the position-

trajectory control algorithm of single-rotor helicopter with tail rotor. Yamaha R-MAX  is a 

small-scale helicopter  test vehicle. It is assumed that the helicopter weight is 28 kilograms. 

The wind speed is about 5 m/s. The desired path has form of square ‘snake’. This type of 

path is selected for objective reasons. Square ‘snake’ is a complex trajectory of the polylines 

with length of 5 m. It would demonstrate the capabilities of the autopilot to avoid obstacles 

in a restricted space. For example, it could be a flight in the city. In this work we made 

simulation in two steps: in Matlab and in hardware-software complex. The Matlab simulation is 

applied for checking of control algorithms adequacy.  

It should be noted that the procedure of simulation for helicopter in the hardware- 

software complex has distinctive features. The flight simulation in hardware-software 

complex is very close to a physical experiment. It consists of elements of real flight: take-

off, landing, moving on the reference point of desired path.  

The figures 2, 3 show the results of simulation. Table 1 includes the errors. 

 

Fig. 2 Simulation in Matlab. Left: actual flight path.  

Right: the velocity projections in helicopter body frame 

 

Fig. 3 Simulation in hardware- software  complex. Left: actual flight path.  

Right: the velocity projections in helicopter body frame 
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Table 1 Errors between desired and actual paths  

Error type 
Value 

(in meters) 

Error in the steady state 0.57 

Standart deviation 0.1202 

4. CONCLUSIONS 

We use simulation to make indoor validation of autopilot control algorithms synthesis 

procedure, to analyze its properties and define its performance in path-following accuracy 

with wind disturbances. The simulation results show that a small-scale single rotor 

helicopter with position and trajectory control algorithms provide flight along trajectories 

with precision that are inaccessible to the majority of the pilots and autopilot based on 

linear control algorithms. 

Using a nonlinear helicopter dynamics model in position-trajectory control approach 

simplifies  the control system architecture. It  excludes the necessity of additional loops 

for multicoupling of control channels compensation. The results of simulation show the 

possibility of the autopilot for obstacles avoidance. 
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