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Abstract. This paper presents neural networks application and their advantages in 

estimation and analysis of numerical results obtained from previous research of dynamic 

stability of double beam system under stochastic loading processes. For determining the 

bounds of the almost sure stability of the double-beam system, direct Lyapunov method 

was applied and conventional numerical methods for stability region determination were 

used. Numerical results obtained by dynamic stability analysis were then used as a 

training data for artificial neural network (ANN). Application of ANN allows reduced 

computation time for accurate determination of stability regions, while the main 

advantage of trained ANN is that it estimates results even in cases where conventional 

numerical method fails. 
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1. INTRODUCTION 

The past decades have witnessed a continuously growing interest in the development of 

diverse models based on techniques of Computational Intelligence (CI), whose predominant 

technologies include neural networks, fuzzy sets, and evolutionary methods [1]. 

Feedforward networks often have one or more hidden layers of nonlinear neurons 

followed by an output layer of linear neurons. Multiple layers of neurons with nonlinear 

transfer functions allow the network to learn nonlinear relationships between input and 

output vectors [2]. Artificial neural networks are interesting for classification and regression 

purposes due to their universal approximation property and their fast training if sequential 
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training based on backpropagation is adopted [3]. Due to a complex interconnection 

between the input patterns of neural network and the architecture of neural network, the 

selection of neural network architecture must be done simultaneously. These aspects requires 

the formulation of search problem and the investigation of search techniques which are 

capable of facilitating model development work and resulting more reliable and robust 

neural network models [4]. 

The purpose of the present paper is to develop neural network tool for advanced 

numerical analysis. The network is trained with numerical data obtained from double 

beam system stability analysis. Feed forward artificial neural network is designed as an 

alternative to conventional numerical methods and it allows accurate analysis with 

reduced calculation time and gives results even in cases where conventional methods fail. 

The learning method of ANNs enables this system to learn from given training data sets, and 

due to the massive parallelism of the ANNs real-time processing of larger data sets is 

provided [5]. The principal contribution of this paper is to significantly reduce calculation 

time as well as to predict desired results when they cannot be calculated using conventional 

numerical method. 

The present paper is organized as follows. Governing differential equations of analyzed 

system are given in Section 2. The neural network estimator is presented in Section 3. The 

neural network numerical procedure of determining the boundaries of stability is given in 

Section 4. Section 5 ends the paper with concluding remarks. 

2. ANALYSED MODEL 

Numerical ANN training set results are taken from [6] where direct Lyapunov method 

was used for double beam system (Fig. 1) stability analysis. 

  

Fig. 1 Elastically connected double beam system 

The coupled governing differential equations for transverse vibrations of the system 

can be expressed by 
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(1) 

where wi (i =1, 2) denotes the transverse beam displacement, i mass density, i  

retardation time, X axial coordinate, t time, EiIi bending stiffness of the beam, K  the 

stiffness modulus of the Winkler elastic layer, and F1(t), F2(t) are the time-dependent 

stochastic processes. 
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Now, the following parameters were used to non-dimensionalize equations (1)  

 
4 2

( )
, 2 , , ( ) , , ( 1,2)

i i i i
i i oi i

E I F t K
X Lx e f f t K i

A AAL AL
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where vi, ei and K are the reduced retardation time, beams stiffnesses and stiffness of the 

Winkler layer, respectively, foi and fi (t) are the reduced constant and stochastic 

component of axial forces.  

Now, they have the form 
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(3) 

Calculations were made by using Gauss-Christoffel quadratures; for the Gaussian 

process the parameters of a Gauss-Hermite quadrature is taken. For the harmonic process 

we set f1(t) = H cos(t +  
), where H,  are the fixed amplitude and frequency, and  

 is 

the uniform distributed phase on the interval [0,2), and a Gauss-Chebyshev quadrature is 

used. In order to compare both processes, the variance of the harmonic process 


2

1H = H 
2
 / 2 is used. The stability regions are given as functions of the reduced retardation 

time v, system parameters e1, e2, K, reduced deterministic load fo1 and deterministic axial 

load ratio , where  = fo1 / fo2. 

3. NEURAL NETWORK APPROACH FOR NUMERICAL ANALYSIS 

Based on analysis explained in previous sections, obtained results are showing that not 

in all the cases conventional methods are usable. For some arbitrary parameters 

conventional numerical methods fail to provide variance for some values of retardation 

time ν, or fail to provide any results. Therefore the advanced concept of neural network 

estimator is presented in this paper that successfully calculates variance in cases where 

conventional methods fail. Other advantages that we have been aiming for were reduced 

calculation time and simplicity of developed tool for numerical analysis that allows quick 

analysis for arbitrary parameters within the training range [2,5,7,8]. 

The ANN usually involves very simple dynamical schemes as nodes, and very 

complex networks of connections, an approach known as connectionism. Once the neural 

model of the process is built, off-line trained, it can be continuously updated on-line, in 

real-time, by minimizing the difference between its predicted output value, and its target 

value. Feed forward networks often have one or more hidden layers of nonlinear neurons 

followed by an output layer of linear neurons. Multiple layers of neurons with nonlinear 

transfer functions allow the network to learn nonlinear relationships between input and 

output vectors [2]. For the numerical analysis artificial neural network with one hidden 

layer is designed, trained and tested. The network has five inputs (reduced retardation 

time v1 = v2 = v, beams stiffnesses e1 = e2, reduced stiffness of the Winkler layer K, 

reduced constant component of axial force fo1 and deterministic axial load ratio ) and two 
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outputs (variances for Gaussian and harmonic stochastic process). The input layer has 5 

neurons, hidden layer has 10 neurons, and output layer has 2 neurons. This multilayer 

feed forward network was trained for function approximation (nonlinear regression). The 

training process required a set of examples of proper network behavior network inputs u 

and target outputs y [8]. 

The process of training a neural network involves tuning the values of the weights and 

biases of the network to optimize network performance, as defined by the network performance 

function. The common performance function for feed forward networks is mean square 

error [3,4] between the network outputs ŷ  and the target outputs y. It is defined as follows 
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For training, testing and validation of developed multilayer feed forward network 756 

data sets were used, with random data division and Levenberg-Marquardt back-

propagation training algorithm. Used data set was created by selecting four variables K, e1 

= e2, f01 and χ within the range of K=[50,2000], e1 = e2 = [1,4], f01 = [5,15], χ = [1,1] and 

retardation time goes to 0.01 with descrete time step of 0.0005. Optimization methods for 

performance function uses the Jacobian of the network errors with respect to the weights. 

The gradient and the Jacobian are calculated using a backpropagation algorithm, which 

involves performing computations backward through the network. After 1000 iterations 

the regression value of training set of neural network estimator was R = 1, regression 

value of validation is R = 0.99991, regression value of test is R = 0,99999 and regression 

value of neural network is R = 0.99998 (Fig. 2).  

 

Fig. 2 Neural network training regression 
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4. NUMERICAL RESULTS 

As in [6], we will consider the case when upper beam is loaded by deterministic and 

stochastic forces, and the lower beam is subjected only to deterministic load, i.e. f2(t) = 0  

and fo2  0. Stochastic component acting on upper beam is modeled as Gaussian or 

harmonic process with zero mean and variances 2
1G , 2

1H , respectively. 

For beam parameters that were used in training, validation and testing, comparation of 

results achieved by conventional methods (solid line) and results achieved by neural 

network (dot line) are shown in Fig. 3 (results presented by upper line are for Gaussian 

process and results presented by lower line are for harmonic process). 

 
Fig. 3 Numerical results and neural network outputs comparison 

It is obvious that neural network can estimate valid analysis results of the double beam 

system stability. 

As example, 3D graphs are created for different values of deterministic load ratios 

(Fig. 4) and for different values of Winkler elastic layer stiffness (Fig. 5) where these data 

were obtained from previously trained neural network.  

 

Fig. 4 Stability regions for a) Gaussian and b) harmonic process in function  

of deterministic axial load ratios 
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Fig. 5 Stability regions for a) Gaussian and b) harmonic process in  function of a 

Winkler elastic layer stiffness 

5. CONCLUSION 

There are numerous advantages that presented method gives. After neural network is 

trained - weights and biases are tuned, it allows very quick and accurate analysis. With 

simple change of the input parameters it successfully calculates corresponding outputs. 

Trained neural network estimator uses significantly reduced calculation time. Another 

very important advantage is that it gives results in cases where conventional methods fail.  

During the analysis of conventional methods, authors have noticed that for some set of 

the beam parameters conventional methods fail to provide results in some specific 

retardation time. Developed neural network allows us to determine stochastic process 

variance in that specific retardation time.  
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