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Abstract. The robust recursive algorithms, for identification of decentralized stochastic 

systems, are developed. It is supposed that stochastic disturbance belongs to a specified 

class of distributions which include the gross error model suitable for the description of 

outliers presence. Such an assumption introduces into the recursive algorithms a 

nonlinear transformation of prediction error. The given algorithms are robust with 

respect to uncertainty in the disturbance distribution. The individual subsystems are 

described with SISO (single-input single output) ARMAX model. Two algorithms are 

considered: the stochastic approximation and the least squares. Their comparison is 

based on simulations. 
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1. INTRODUCTION 

High performance requirement of complex industrial processes increases demands on 

control systems. The concept of driving a large system by a central computer has become 

unsuitable for either economic or reliability reasons. A number of large-scale systems 

founded in the real world are composed of a set of small, interconnected subsystem, such 

as power systems with strong interactions, water systems which are widely distributed in 

space, traffic systems with many external signals, large-space flexible structures, digital 

communication networks and economic systems. It is generally impossible to incorporate 

many feedback loops into the controller design and is too costly even if they can be 

implemented. These difficulties motivate the development of decentralized control theory, 

in which each subsystem is controlled independently [1-5]. 
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Within the control theory of complex systems, there are two important approaches: 

i) the first approach is based on the principle of decentralization which allows the 

decentralization of multivariable systems into a collection of SISO (single-input 

single-output) or collection of MIMO (multi-input multi-output) systems with 

lower order than original MIMO system 

ii) the second approach for the control of complex system are a hierarchical control 

systems[6-7]. This theory is based on decomposition-coordination principle. 

The hierarchical identification, inspired by the hierarchical control is presented in [8-

10]. Hierarchical identification uses subsystem decomposition in identification, and is, 

also, called bootstrap identification. In this area a system is decomposed into several 

subsystems with smaller dimension and fewer variables, and then the parameter vector is 

identified. The difficulties arise is that there exist common unknown quantities among 

subsystems. These problems are resolved for deterministic and stochastic systems (with 

Gaussian noise) in [8-10]. 

The hierarchical identification has important application in parameter identification of 

multirate systems [11-12]. 

The papers [13-14] describe a switching scheme for MIMO systems so that switching 

in different control agents is carried out in a decentralized way. 

In [15] a decentralized adaptive synchronization problem is considered. The topic is 

based on capability and limitation of the feedback mechanism, traditional adaptive control 

and complex systems (especially complex networks). In the study of complex adaptive 

systems, theory plays an important role which mainly focuses on agent-based modelling 

and simulations. The topic of the [16] covers a kind of common and important phenomenon 

in nature (for example, chaos synchronization has been found to be useful in secure 

communication). In recent years, several synchronization-related topics (coordination, 

rendezvous, consensus, formation, etc.) have become active in the research community. 

Two important attributes of large-scale systems are: 

i) they often represent complex, real-life systems 

ii) they have hierarchical (multilevel) and decentralized information structures. 

Recent advances of soft computing (fuzzy logic, neural network and evolutionary 

algorithms) have led us to new approaches for control of complex systems. Connections 

between two approaches are presented in [17]. 

In the recursive identification of MIMO systems (hierarchical identification) [8-10] 

the key assumption about the stochastic disturbance is that disturbance has a Gaussian 

distribution. In this paper, we supposed that disturbance has non-Gaussian distribution. 

Justification of such approach was confirmed in practice [18-20]. To be more specific, the 

real stochastic disturbance rarely, if ever, has Gaussian distribution. Practical investigations 

show that, in the population of observations, rare large observations (outliers) are present so 

that their distribution is non-Gaussian. Because, estimation algorithms, based on Gaussian 

disturbance model, have been found to be inefficient in the above case. Considerable 

effort has been oriented towards the design of robust estimation algorithm possessing a 

low sensitivity to distribution changes. The fundamental contribution has been given by 

Huber [21-22]. The field is known as robust statistics and min-max robust estimation. 

Further development of this idea and application to different types of problems has led to 

many achievements. The applications in system identification are given in [23-25] and in 

the field of adaptive control in [26-27]. 
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A problem with stochastic description of the disturbance is that the probability 

distribution of a disturbance must be known a priori. Such assumption is unrealistic. In 

the robust identification [23-25] (or adaptive control [26-27]) it is supposed that a priori 

known only a class of distributions to which belongs the disturbance. 

In this paper, we will consider robust identification of MIMO systems described with 

ARMAX model. The MIMO system is decomposed into a collection of SISO subsystems. 

It is supposed that stochastic disturbance has a non-Gaussian distribution. Using 

prediction errors concept two algorithms are derived: stochastic approximation algorithm 

and least squares algorithm.  

Applications of decentralization in the field of adaptive control, for the Gaussian 

noise, are considered in [28] where the reference decentralized indirect adaptive control is 

considered. Reference [29] describes the case when stochastic disturbance has a non-

Gaussian distribution and interconnections of subsystems are nonlinear functions. For 

estimation of unknown parameters of the local controllers the stochastic approximation 

type algorithms are used. Using martingale theory, it is shown that the closed-loop system 

is globally stable and that the overall mean-square tracking error is bounded. In reference 

[30] the decentralized stochastic minimum variance controller, for the MIMO subsystems, 

is considered. 

In this paper analysis of recursive algorithms for identification of large scale systems 

is based on simulations. The expected conclusion is that the convergence speed of 

stochastic approximation (SA) algorithm is significantly lower than the convergence 

speed of least squares. In the future we will consider SA with extended memory. Such 

intervention significantly increases the convergence speed of the SA algorithm while 

preserving the simplicity of the algorithm. 

2. PROBLEM FORMULATION 

The overall system consists of N subsystems (see Fig. 1). 

 

Fig. 1 Interconnected systems 

In Fig. 1 ui, si, yi, i = (1,2,..., N) are control inputs, interconnection inputs, control 

outputs and interconnection outputs, respectively. 

Let us consider the large-scale system S, which is consists of N interconnected 

stochastic systems S1, S2,...,SN. Each interconnected system Si, 1  i N, can be described in 

the next form.   
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and where nAi is the degree of polynomial Ai(q
1

), and nBi, nCi, nBij and nAif are degrees 

of  corresponding polynomials. The block scheme of model (1) is given on the Fig. 2. 

 

Fig. 2 Structure of subsystem 

For the system presented on Fig. 2 .., {yi(k)} and {ei(k)} are input, output and 

stochastic disturbance of the i-th subsystem Si, (i,j)  N, j  i. 

Remark 1. In references [31-32] more general model then (1) is considered. The form 

of model is  
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Sequences {vi(k)} and {xi(k)} are the interaction inputs and outputs of Si from and to Sj 

 ( , ),i iv f ik  x   (4) 

where 1[ ,...., ]T T

Nx xx . 
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The function fi(k,x) may contain the non-linearities of the i-th subsystem and non-

linear interactions with other subsystems. Polynomials Ai(q
1

), Bi(q
1

) and Ci(q
1

) are the 

same as in relation (1) and polynomials Di(q
1

), Pi(q
1

) and Qi(q
1

) have a form 
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The overall system S, which is composed of subsystems Si interconnected as in (4), 

can be described as 

 1 1 1 1: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )S q k q k q k q k     A y B u C e D v   (6) 
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and disturbance. The corresponding matrix polynomials are given by the following 
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The vector 1( )   ,  ( ) [ ,...., v ]N T

Nk R k v v v and ( ) Nk Rx  are interconnected as 

 ( ) , ( ))(k k kv xf   (8) 

The nonlinear function : N NR R R f  is continuous and bounded in both arguments. 

Also, there exist non-negative, but unknown numbers such that ij  
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The composite system (1)   can be described in the form of ARMAX model 
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The i-th interconnected system output variable in the equation (1) can be expressed as  
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with 1,2,...,j N   and  j i . 

The output yi(k) of the interconnected stochastic system iS can be expressed in the 

following compact form 
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In relation (10) values e(k  i), i = 1,2,..., nBij are not measurable and because the 

following vector is introduced  

 
( ) [ ( 1), , ( ), ( 1), , ( ), ( 1), ,

( ), ( 1), , ( ), ( 1), , ( )]

i i i i i i i i

T

i i i i ij j i ij

k y k y k nA u k u k nB k

k nC u k u k nB y k y k nA

        

     

φ
  (18) 

where 

 ˆ( ) ( ) ( 1) ( )T

i i i iε k y k k k  θ φ   (19) 

represents the prediction error, and is a base for the formulation of the generator (functional) 

for a recursive algorithm. 
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3. ROBUST RECURSIVE ALGORITHM 

Dominant approach in the literature devoted to the identification of stochastic systems 

is based on assumption that the probability distribution of stochastic disturbance is exactly 

known (usually it is assumed that it have Gaussian distribution). In this way, an absolutely 

optimal recursive algorithm can be obtained [24]. Analysis of real data, however, is 

shown that the population measurements also contain outliers (measurements inconsistent 

with the majority of the population measurements) [18-20]. The presence of outliers 

significantly degrades performances of linear recursive algorithms. A mathematical theory 

(robust statistics [21-22]) was developed and provides a framework for the efficient 

solution of the problem described above. For stochastic disturbance it is assumed that  a 

priori is known the class of distributions to which disturbance belongs. In this paper, is 

considered the class of approximately normal distributions 

 2 2 2 2

1 2 1 2{ : (1 ) (0, ) (0, )},P P P N N            (20) 

where   [0,1) is the degree of contamination and N(0, 2
) denotes the Gaussian 

distribution with zero mean and variance  2
. The class of distributions (9) is suitable to 

describe the presence of outliers in the systems output measures. 

For the design of robust algorithms the generalised maximum likelihood method is 

used. According to the philosophy of robust statistics, there is, for a given class of 

distributions, the least favourable distribution. For the i-th subsystem and the class of 
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The connection between parameters  and k is [21] 
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By using relations (19) and (23), empiric functional for i-th subsystem is obtained 
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The recursive minimization of such a criterion can be done by using the approximate  

Newton Raphson type method [24-25] 
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Moreover, with large k and by virtue of the approximation truth of the optimality 

conditions, yielding 1
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i iJ  θ  and we have 
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The algorithm (29)-(31) represents a robust version of the conventional extended least 

squares.  

Remark 2. In [24] it is shown that 
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Remark 3. For the class of distribution (21) the nonlinear transformation of prediction 

error in relation (29) i() is Huber`s function 
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The graphical representation of function (35) and (36) is given on the next figure 
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Fig. 3 Nonlinear function of prediction errors 

 

Introducing value ri(k) = trPi(k), from the least squares (29)-(31)  the stochastic 

approximation algorithm is obtained. 
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4. SIMULATIONS 

In simulations is used following decentralised ARMAX model 
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where 1( )e k  and 2 ( )e k  are stochastic disturbances 
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In simulations, k = 3, while the contamination   has values 0.05, 0.1, 0.15, and 0.2.  

The error of estimation is calculated as follows 
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Fig. 4 Error of SA algorithm for  = 0.05 Fig. 5 Error of SA algorithm for  = 0.1 

  

Fig. 6 Error of SA algorithm for  = 0.15 Fig.7 Error of SA algorithm for  = 0.2 

  

Fig. 8 Error of LS algorithm for  = 0.05 Fig. 9 Error of LS algorithm for  = 0.1 
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Fig. 10 Error of LS algorithm for  = 0.15 Fig. 11 Error of LS algorithm for  = 0.2 

The Fig. 4 - Fig. 7 presents the behaviour of robust stochastic approximation algorithm 

for different degrees of contamination. It follows that the estimation error increases with the 

increase of degree of contamination.  

Similar simulations, Fig. 8 - Fig. 11, are presented for robust least squares. It is possible 

to conclude that robust least squares algorithm is more superior then stochastic approximation 

algorithm. 

CONCLUSION 

In the paper has been considered robust identification of decentralized systems. Two 

algorithms have been proposed: the algorithm of stochastic approximation and the extended 

least squares algorithms. Simulations show that the stochastic approximation algorithm has 

smaller convergence speed in comparison with the least squares algorithm. Further 

investigations will be devoted for increasing speed of convergence of stochastic approximation. 

The candidates for that are recursive algorithms with extended memory. 
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