Branko Gvozdić, Dušan Đurđević, Nebojša Raičević

DOI Number
First page
Last page


The convolutional perfectly matched layer (CPML) is currently, perhaps, the most efficient type of absorbing boundary condition in finite difference time domain method (FDTD) modeling of electromagnetic fields. The aim of this paper is to give a more detailed insight into parameter setting and absorption performance of CPML. In case of electromagnetic waves absorption for high-frequency impulsive source modeling, a proper choice of the CPML parameters is substantial. The numerical results show that stretching coefficient affects both absorption efficiency and dispersion. We demonstrate that, in order to eliminate dispersion, the stretching coefficient should be as small as possible. Additionally, the results have shown that a differentiated Gaussian pulse is a better choice than a regular Gaussian pulse in FDTD simulations.


finite difference time domain, FDTD, perfectly matched layer, PML, convolutional PML, CPML parameters

Full Text:



J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of Computational Physics, vol.114, pp.185200, 1994. [Online]. Available: https://doi.org/10.1006/jcph.1994.1159

Z. S. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition”, IEEE Trans. Antennas Propagat., vol. 43, pp. 1460–1463, 1995. [Online]. Available: https://doi.org/10.1109/8.477075

J. P. Berenger, “Numerical reflection from FDTD PMLs: A comparison of the split PML with the unsplit and CFS PMLs”, IEEE Trans. Antennas Propagat., vol. 50, p. 258–265, 2002. [Online]. Available: https://doi.org/10.1109/8.999615

D. Correia, J. M. Jin, “Performance of regular PML, CFS-PML, and Second-order PML for waveguide problems”, Microwave andOptical Technology Letters, vol. 48, pp. 2121–2126, 2006. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/mop.21872/full

W. C. Chew, W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates”, IEEE Microwave Guided Wave Lett., vol. 7, pp. 599–604, 1994. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/mop.4650071304/full

C. M. Rappaport, “Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space”, IEEE Microwave Guided Wave Lett., vol. 5, pp. 90–92, 1995. [Online]. Available: https://doi.org/10.1109/75.366463

F. L. Teixeira, W. C. Chew, “PML-FDTD in cylindrical and spherical coordinates”, IEEE Microwave Guided Wave Lett., vol. 7, pp. 285–287, 1997. [Online]. Available: https://doi.org/10.1109/75.622542

F. L. Teixeira, K. P. Hwang, W. C. Chew, J. M. Jin, “Conformal PML-FDTD schemes for electromagnetic field simulations: A dynamic stability study”, IEEE Trans. Antennas Propagat., vol. 49, pp. 902–907, 2001. [Online]. Available: https://doi.org/10.1109/8.931147

M. Kuzuoglu, R. Mitra, “Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers”, IEEE Microwave Guided Wave Lett., vol. 6, pp. 447–449, 1996. [Online]. Available: https://doi.org/10.1109/75.544545

J. P. Berenger, “An optimized CFS-PML for Wave-Structure Interaction Problems”, IEEE Transactions on Electromagnetic Compatibility, vol. 54, pp. 351–358, 2012. [Online]. Available: https://doi.org/10.1109/


R. J. Luebbers, F. Hunsberger, “FDTD for Nth-order dispersive media”, IEEE Trans. Antennas Propagat., vol. 40, pp. 1297–1301, 1992. [Online]. Available: https://doi.org/10.1109/8.202707

J. A. Roden, S. D. Gedney, “Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media”, Microwave Optical Tech. Lett., vol. 27, pp. 334–339, 2000. [Online]. Available:http://onlinelibrary.wiley.com/doi/10.1002/10982760(20001205)27:5%3C334::AIDMOP1%3E3.0.CO;2-A/full

I. Giannakis, A. Giannopoulos, “Time-Synchronized Convolutional Perfectly Matched Layer for Improved Absorbing Performance in FDTD”, IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 690–693, 2015. [Online]. Available: https://doi.org/10.1109/LAWP.2014.2376981

P. Lee, J. L. Vay, “Efficiency of the Perfectly Matched Layer with high-order finite difference and pseudo-spectral Maxwell solvers”. Computer Physics Communications, vol. 194, pp. 1–9, 2015. [Online]. Available: https://doi.org/10.1016/j.cpc.2015.04.004

Z. H. Li, Q. H. Huang, “Application of the complex frequency shifed perfectly matched layer absorbing boundary conditionsin transient electromagnetic method modelling”, Chinese J. Geophys, vol. 57, pp. 12921299,2014.[Online].Available:http://en.cnki.com.cn/Article_en/CJFDTOTALDQWX201404026.htm

Fang, Sinan, et al. “Crosswell electromagnetic modeling from impulsive source: Optimization strategy for dispersion suppression in convolutional perfectly matched layer.” Scientific reports, vol. 6, 2016. [Online]. Available: https://dx.doi.org/10.1038%2Fsrep32613

B. D. Gvozdic, D. Z. Djurdjevic, “Performance advantages of CPML over UPML absorbing boundary conditions in FDTD algorithm.”, Journal of Electrical Engineering, vol. 68, no 1, pp. 47-53, 2017. [Online]:http://iris.elf.stuba.sk/JEEEC/data/pdf/1_117-06.pdf

Wenhua Yu, Electromagnetic simulation techniques based on the FDTD method, Vol. 221, John Wiley & Sons, 2009.

Umran S. Inan, Robert A. Marshall, Numerical electromagnetics: the FDTD method, Cambridge University Press, 2011.

DOI: https://doi.org/10.22190/FUACR1703229G


  • There are currently no refbacks.

Print ISSN: 1820-6417
Online ISSN: 1820-6425