MODELING MONTHLY INFLATION IN THE REPUBLIC OF SERBIA, MEASURED BY CONSUMER PRICE INDEX

Zorana Kostić, Vinko Lepojević, Vesna Janković-Milić

DOI Number
-
First page
145
Last page
159

Abstract


This paper presents a framework for the practical modeling of inflation, as one of the key economic indicators. Empirical research of monthly inflation trends in the Republic of Serbia was done covering the period from January 2007 to December 2015. The seasonally adjusted ARIMA model and Holt-Winters smoothing were used for determining the future values of the consumer price index, which has been a measure of inflation in the Republic of Serbia since January 2009. The main objective of the study is to create a model that will be used for analytical and forecasting purposes. The specific objective is the comparative analysis of accuracy of these two methods (Holt-Winters and ARIMA) in determining the future value of the consumer price index. The work relies on the theoretical results of dual relationship between AR (p) and MA (q) processes in determining the future values of consumer price index.

Keywords

consumer price index, inflation, forecasting, Holt-Winters smoothing method, ARIMA

Full Text:

PDF

References


Baldigara, T., Mamula, M., (2015). Modelling international tourism demand using seasonal ARIMA Models, Tourism and Hospitality Management, Vol 21, No. 1.pp.19-31.

Dobre, I., Alexandru, A.A. (2008). Modelling unemployment rate using Box-Jenkins procedure, Journal of applied quantitative methods, Vol.3, No2, 156-166.

Eimutis Valakevicius, Mindaugas Brazenas (2015). Application of the Seasonal Holt-Winters Model to Study Exchange Rate Volatility. Inzinerine Ekonomika-Engineering Economics, 2015, 26(4), 384–390 http://dx.doi.org/10.5755/j01.ee.26.4.5210

Etuk, E.H. (2012). Seasonal ARIMA model to Nigerian consumer price index data, American Journalof Scientific and Industrial Research, 3(5): 283-287 doi:10.5251/ajsir.2012.3.5.283.287

Eurostat. http://ec.europa.eu/eurostat/tgm/table.do?tab=table&language=en&pcode=teicp000&tableSelection=1&plugin=1 (3.10.2015.)

Fat, C. M., & Dezsi E. (2011). Exchange-rates forecasting: exponential smoothing techniques and ARIMA models. University of Ordea.

Fiscal Strategy for 2014 with projections for 2015 and 2016. Government of the Republic of Serbia. http://www.mfin.gov.rs/pages/article.php?id=9886 (9.11.2015.)

Janković-Milić, V., Lepojević, V. and Đorđević, V.,(2011) Adaptive Filtering Method in Business Forecasting, Međunarodna naučna konferencija: Problems of Competitiveness of Contemporary Economies, Ekonomski fakultet Niš, 2011, str. 485-492.

Johnson, L. A., Montgomery, D. C., & Gardiner, J. S. (1990). Forecasting and TimeSeries Analysis. McGraw-Hill, Inc, 2nd edition. Jorion, P. (1995). Predicting volatility in the foreign exchange market. Journal of Finance, 50, 507−528.

Kalezić, Z., Cerović, S., Božović, B. (2007) Prognoziranje inflacije: Empirijsko istraživanje kretanja indeksa cijena na malo u Srnoj Gori za 2007. godinu – primjena ARIMA modela, Centralna banka Crne Gore, Sektor za istraživanja i statistiku, Podgorica.

Kovačić, J. Z. (1995). Analiza vremenskih serija. Univerzitet u Beogradu, Ekonomski fakultet.

Lepojević, V. and Anđelković-Pešić, M.,(2011) Forecasting Electricity Consumption by Using Holt-Winters and Seasonal Regression Models, Facta Universitatis, Series: Economics and Organization Vol. 8, No 4, 2011, pp. 421 - 431.

Lepojević, V., Janković-Milić, V., „Prognoziranje mesečne inflacije u Srbiji primenom eksponencijalnog i Holt-Wintersovog izravnanja“, Unapređenje konkurentske prednosti javnog i privatnog sektora umrežavanjem kompetencija u procesu evropskih integracija Srbije, Ekonomski fakultet u Nišu, 2011., 435-442.

Maddala, G.S. (1992). Introduction to Econometrics. New York: Macmillan Publishing Company.

Mahmoud, K. Okasha, Deaa M.M Abu Shanab, (2014). Forecasting Monthly Water Production in Gaza City Using a Seasonal ARIMA Model, Scholars Journal of Physics, Mathematics and Statistics, 1(2): 61-70.

Meyera, A. et al. 1998. “Forecasting Irish Inflation Using ARIMA Models”, Central Bank of Ireland Technical Paper 3/RT/98.

National Bank of Serbia (2015). Izveštaj o inflaciji. Beograd.

Nastić, N. (2012) Empirijsko istraživanje cijena u BiH 2006-2010. i prognoza inflacije za 2011. godinu – Primjena ARIMA modela, Zbornik radova Ekonomskog fakulteta u Istočnom Sarajevu, 6, str. 91-104. DOI: 10.7251/ZREFIS1206091N

Prorok, V., Paunović (2015) Predviđanje kretanja tržišnog indeksa BELEXLINE na bazi ARIMA modela, Synthesis-International Scientific Conference of IT and Business-Related Research, стр. 432-436. DOI: 10.15308/Synthesis-2015-432-436.

Quang, T. T., Zhihua, M. Hengchao, Li., Li, H., Quang K. T. (2015). A Multiplicative Seasonal ARIMA/GARCH Model in EVN Traffic Prediction, International Journal of Communications, Network and System Sciences, 8, 43-49.

Salam, A.M et al. 2006. “Forecasting Inflation in Developing Nations: The Case of Pakistan ”, International Research Journal of Finance and Economics, No. 3.

Stock, J.H. and Watson, M.W. 1999. “Forecasting inflation”, Journal of Monetary Economics 44, pp. 293–335.

Wooldridge, J. M. (2005). Introductory Econometrics: A Modern Approach Fifth Edition, South-Western Cengage learning.

Ministry of Trade, Tourism, and Telecommunications of the Republic of Serbia (2015). Kupovna moć stanovništva. Potrošačka korpa. Beograd.

Ministry of Finance of the Republic of Serbia, Treasury Administration. http://www.trezor.gov.rs/ (20.12.2015.)

Statistical Office of the Republic of Serbia. http://webrzs.stat.gov.rs/WebSite/ (20.12.2015.)


Refbacks

  • There are currently no refbacks.


ISSN 0354-4699 (Print)

ISSN 2406-050X (Online)