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Abstract. A case study is reported related to the design of IIR digital filters exhibiting 

critical monotonic amplitude characteristic (CMAC) in the pass band. This kind of 

amplitude characteristic offers several advantages as compared to its non-monotonic 

counterparts, although it has not been studied thoroughly so far, if at all. After giving a short 

overview of the way of CMACs generation, arguments will be listed in favor of the IIR 

version of the digital filter function realization. Next, the IIR implementation of the digital 

filters will be considered in short. The main part of the paper will be devoted to the design 

sequence of this kind of filters which will be illustrated on the example of a band-pass filter 

obtained by a set of transformations from an all-pole low-pass analogue prototype. This will 

be the first time a CMAC band-pass IIR digital filter is reported. 
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1. INTRODUCTION 

The critical monotonic amplitude characteristic (CMAC) filters represent an extension 

of the broad family of filtering functions having all transmission zeroes at infinity [1]. 

They exhibit distinctive properties such as monotonic amplitude response in the pass 

band, reduced group delay distortions, higher symmetry of the pulse response, improved 

mapping of tolerances, improved sensitivity, and high selectivity.  

The interest for a digital realization of this kind of filtering functions comes from 

several reasons. First of all, only one sub-class of these functions has already been 

published in its digital form, the Butterworth filters [2]. As shown in [1] and elsewhere, 

however, practically all sub-classes of CMAC functions outperform the Butterworth 

solution in almost every aspect of implementation with the exception of function’s simplicity. 

This study is a part of our effort to make CMACs more popular and to help bridging the gap 

between designers and CMAC which has deepened during time [3]. Second, due to their 

monotonic behavior, their sensitivity in the passband is reduced and accordingly, they 
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offer a good alternative to their non-monotonic counterparts (e.g. Chebyshev and Least p-

th [4]). At the same time, this means an improvement in the mapping of the tolerances of 

the circuit parameters into the tolerances of the attenuation characteristic [5]. Finally, they 

exhibit smaller distortions of the passband group delay which reduces the complexity of the 

potential phase-corrector to be used to flatten the group delay characteristic [6]. This also 

means that CMAC have smaller asymmetry of the response to a Dirac pulse in the time 

domain which may be of crucial importance for some applications in telecommunication 

and signal processing. 

It is our opinion that the advantages of CMAC filtering functions have not been 

completely understood in the research and design community. That especially stands for the 

IIR implementation where no instances of implementation of CMAC may be found. The 

reason for that, in our opinion, is inertia and the need of some additional (mathematical) 

knowledge for generation of the CMAC transfer functions as compared with the Chebyshev 

and Butterworth filters. Here we try to reopen the subject of CMAC design by reporting the 

results related to the design of band-pass digital IIR filter which is the first implementation 

of band-pass CMAC of all.  

Being a designer, one is first to decide either to go for FIR filters and start the synthesis 

of transfer functions for each type of CMAC from scratch, or to go for IIR filters and trans-

form the existing analog data into the digital domain. In the text below, a short paragraph is 

devoted to help the decision. As a conclusion, the designer will be advised to go for an IIR 

filter with parallel implementation as the most economical solution in almost every respect. 

Next, one is to create the CMAC transfer function and to choose among sub-classes. 

Again, a short paragraph will be devoted to this issue. Four main sub-classes of CMAC 

will be described from the implementation point of view. Corresponding transfer function 

generation will be discussed shortly. 

Based on these, a design sequence will be advised for finding the coefficients of the 

transfer function of IIR filters in the z-domain. Note that parallel implementation will be 

recommended and all the calculations will be performed under that presumption. The 

transformed function will be studied from both stability and accuracy point of view.  

The procedure will be exemplified on the case of a band-pass IIR filter. To get it, a low-

pass to band-pass transformation was performed in the analog domain. In that way the analog 

prototype so obtained was to be transformed into the z-domain by bilinear transformation. The 

implementation obtained in this way was evaluated by simulation of a filter excited by a 

complex signal in the time domain. Various possible computing technologies were taken into 

account by changing the number of significant figures for the computations in order to 

establish the most economical implementation satisfying the design requirements. 

The paper is organized as follows. In the second paragraph arguments will be given 

for adopting IIR digital filters. In the third paragraph the CMAC function will be 

introduced. Then, in the fourth paragraph, the bilinear transform implementation to a 

parallelized analog transfer function will be given. The case study describing the design 

(and its verification) of a band-pass CMAC filter will be given in the fifth paragraph. 

2. PROPERTIES OF THE IIR DIGITAL FILTERS 

In digital filter design, one is to decide first on the choice between FIR and IIR filter 

functions and then to proceed to the approximation problem. Then, one is to choose among 
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different structures exhibiting the same transfer function. In the case of digital filters, the 

choice is to be done between the canonical (or state variable) and the parallel form. These 

two are illustrated in Fig. 1 for an IIR digital filter. It should be noted that if the order of 

the filter, n, is even, first order cell at the bottom of Fig. 1b is omitted, leaving only 

second order cells in filter realization.   

When taking the decision between FIR and IIR filters one has to have in mind several 

criteria such as complexity of the solution, stability of the system, and processing time. 

The first criterion may be fragmented into several having the same origin. Namely, 

the complexity of the solution will influence the power consumption, the silicon area and 

the design effort especially when special techniques are to be implemented for reduction 

of the power consumption [7].   

 

Fig. 1 Realization of an nth order IIR filter, a) canonical b) parallel (for n odd) 

Note that not all of the criteria are of equal weight in design. For some applications 

the latency, i.e. the computational time may be of prime importance since it allows for 

speed. In others, reduction of heating or silicon area may prevail as a main criterion. 

Putting all together, the choice is to be made by taking into account several, if not all 

criteria. In our detailed study [3] we came to the following.  

The use of IIR filter has the following advantages: 1. Lower complexity (in some cases, 

e.g. [8], incomparably lower); 2. Lower dissipation; 3. Lower silicon area; 4. Available analog 

prototypes to transform. 
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The use of FIR filters has the following advantages: 1. Lower latency; 2. Easier synthesis 

of linear phase filters; 3. Better stability. 

The use of parallel architecture for the IIR filters as shown in Fig. 1b however, mitigates 

all disadvantages (stability, latency) of the IIR filters, while there are no methods to do the 

same for the FIR counterparts. It is to note here that getting a linear phase by FIR filters 

doubles the complexity of the solution while using a phase corrector for the IIR solution 

contributes marginally to its complexity [8]. 

That was the reason why we adopted the parallel architecture and the IIR filter 

structure for the implementation in the CMAC design. 

3. CMAC FILTERS IN THE s-DOMAIN 

Polynomial (or all-pole) filters with critical monotonic amplitude characteristics 

(CMAC) in the passband have been available for several decades now [1]. The main 

property of CMAC is related to the critical monotonicity of the amplitude response in the 

passband which will be first described here in short. 

The squared amplitude characteristic may be expressed as 

 2 2( jω) 1/{1 (ω )}H K   (1) 

where K(ω
2
) is the characteristic function. In the simplest form (as proposed in [9]), for n 

even, one has: 

 

 

 














2/

1

22

2/

1

222

2222

)ω1(

)ωω(

ε)(ωε)ω(
n

i

i

n

i

i

nLK ,  (2) 

where ω is the normalized angular frequency, n is the order of the filter, ε defines the 

insertion loss at the passband edge, i.e. 
2
 = 10

amax/10
  1,  0 < ωi < 1, i=1,2, ..., ⌊n/2 ⌋ are 

the abscissa of the inflection points, amax is the maximum allowable attenuation (in dB) 

in the passband, and ⌊ ⌋ denotes the floor function. Ln(ω
2
) is a polynomial with n second 

order real zeroes located in the interval (1,1). 

Since the characteristic function has a maximum number of inflection points in the 

passband, so do the amplitude characteristic and the attenuation, the last one being 

defined as  

 
22(ω ) 10 log(1/ ( jω) ) [dB]a H   (3) 

The main property of CMAC leads to a good mapping of the element tolerances into 

the tolerances of the attenuation. Namely, as shown in [4], the tolerance of the 

attenuation may be expressed in the following form: 
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where xi is the ith parameter of the analog circuit. Having a maximal number of inflexion 

points (where both the first and the second derivatives are equal to zero) of the amplitude 
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characteristic in the passband, the CMAC forces the left-hand side of (4) to go through 

zero a maximal number of times. Note, the derivative of a in (4) does not change its sign 

if CMAC is used since it is monotonic which is different to the non-monotonic functions, 

e.g. C and LS. 

Filters exhibiting CMAC characteristic are also known to have lower group delay 

distortions in the passband than their C and LS counterparts [10]. 

 Altogether, the existence of CMAC gives to the filter designer an additional 

freedom in the choice of the best solution for a filter design problem. 

There are four main classes of CMAC as discussed in [1] and [10]. They originate 

from the design criteria implemented for synthesis of the transfer function. These criteria are: 

1. Maximally flat in the origin. The class of filters thus obtained is called Butterworth’s 

after the author [11]. These will be here referred to as B-filters. 

2. Maximum slope of the characteristic function at the edge of the passband [12] [13] 

[14]. The name L-filters comes from the fact that for the original derivation Legendre 

polynomials were used.  

3. Maximum asymptotic attenuation. [15]. Here, these will be referred to as H-filters.  

4. Least-squares-monotonic. In this case, the reflected power in the pass-band was 

minimized under the critical monotonicity criterion [16] and named LSM filters. 

A catalog of the coefficients of the transfer functions of all four classes of CMAC for 

n up to 10, obtained by these criteria, was published in [1] where a comparative study was  

also given. To illustrate this here, Fig. 2 depicts the passband attenuation characteristics of the 

above four classes for n=7. 

In the next section, before proceeding to CMAC digital filter design, the arguments 

for using IIR filters will be discussed in short as based on the comparison of the properties of 

FIR and IIR filters. 

 

Fig. 2 The four main CMAC approximants for n=7 

4. THE BILINEAR TRANSFORM AND CMAC IN THE z-DOMAIN 

There are several transformations claiming to preserve some of the original properties 

of the analog filter function when producing a digital domain counterpart. As listed in 

[17], these methods may be categorized in two groups. In the first group are put the ones 

which implement a specific criterion of approximation such as: the Impulse Response 
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Invariant method; the Modified Impulse Response Invariant method; the Step Response 

Invariant method (or Zero Order Hold); the Magnitude-invariance method; and the 

Phase-invariance method. 

There are, however, transformations based on substitution of the complex frequency 

in the s-domain by an expression being a function of z. In that way, one has the Matched-

z Transform method, and three methods obtained by approximation of the analog integrator 

by a digital one. These are known as the Backward Euler (backward difference); the 

Trapezoidal method or the Bilinear Transform method, discussed in [18], and the second 

order formula introduced in [17]. 

The most popular among all of these is the bilinear transform. Its main properties are 

simplicity of implementation and good preservation of the properties of the amplitude 

characteristic of the analog filter. It preserves the stability of the analog prototype. It 

introduces distortions (reduced by increasing the sampling rate) into the phase (group delay) 

characteristic which, however, has no importance in many applications. It is implemented 

via the following transformation into the analog transfer function: 
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is obtained, where Ha stands for the transfer function of the analog filter, while Hd stands 

for that of the digital filter. 

The procedure of implementation of the bilinear transform to a parallelized analog 

transfer function together with the stability analysis and numerical considerations were 

discussed in [3] and we will not repeat them here.  Instead, in the sequel, we will go for the 

design of a band-pass filter obtained by low-pass-to-band-pass transformation in the s-

domain and then transposed into the z-domain. It is our goal with that design to study all 

steps that remain to be performed in order to get an implementable design and to analyze 

the implementation problems related to the limited number of binary digits that arise in 

real life situations.  

5. DESIGN, VHDL MODELING, AND SIMULATION OF CMAC IIR FILTERS 

The following steps are to be performed in order to get an implementable design of 

the filter: creation of the band-pass filter in the s-domain; performing the s-to-z transform; 

conversion the decimal coefficient values into binary; scaling the coefficients to become 

implementable in fixed point arithmetic; and verification of the design by simulation of 

the filter hardware. Concurrently, based on transfer function evaluation performed after 

taking into account the finite number of digits used for the representation of the coefficients 

(after quantization), a final decision will be enabled about the acceptability of the given 

approximation, i.e. selected number of binary digits. That and scaling are steps of crucial 

importance for defining the quality of the final solution. 
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The example filter will be created based on the following requirements: a) Band-Pass 

(BP); b) Central frequency: f0 = 3 kHz; c) Bandwidth: fBW = 900 Hz; d) Sampling frequency: fS 

= 50 kHz e) Order of the prototype low-pass filter n=7; f) Pass-band amplitude approximation 

LSM; g) s-to-z transform used: bilinear; h) Architecture: parallel combination of Transpose 

Direct Form II (TDF II) filter sections. 

The well known [19] low-pass to band-pass transform was used: 
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where ω is the angular frequency of the prototype filter, while Ω is the angular frequency 

of the band-pass filter. Ω0 is the central angular frequency, while BWr=BW/ Ω0. BW is the 

bandwidth of the filter expressed as angular frequency. After the substitution of sLP=jω 

and sBP=jΩ, (7) becomes a second order algebraic equation with complex coefficients 

which is usually solved by the Geffe algorithm [20]. The new function has fourteen poles 

obtained by solving (7) as depicted in Table 1 (together with the poles of the prototype 

LP LSM filter), and seven zeroes in the origin. In this case BWr=fBW / f0 =0.3 and Ω0=1 rad/s 

was used. 

Table 1 Pole locations of the BP and LP LSM filter in the s-domain 

 Band-pass Low-pass 

No. Real part Imaginary part Real part Imaginary part 

1/2 -0.08266346190 ±0.99657751935 -0.1179475625 ±0.9751626241 

3/4 -0.02025317565 ±1.15676424786 -0.3342221750 ±0.7735798237 

5/6 -0.01513109310 ±0.86421546064 -0.4935853895 ±0.4252967357 

7/8 -0.05591895577 ±1.12151432405 -0.5510897460 0.0 

9/10 -0.04434769671 ±0.88944037693   

11/12 -0.07876429908 ±1.06309950994   

13/14 -0.06931131778 ±0.93551048922   

Next, the transfer function of the band-pass filter was expressed as a sum of partial 

fractions to enable parallel realization and, before the bilinear s-to-z transformation was 

implemented; the poles of the band-pass filter were to be denormalized: every pole coordinate 

was multiplied by 2π∙f0. Based on this the coefficients of the biquads were calculated and s-to-

z-domain mapping enabled. The resulting coefficients of the biquads in the z domain are given 

in the first row (entitled Full precision) of Table 2. This concludes the synthesis procedure. 

We proceed now with the realization. As the first step, we encounter the necessity to 

express the coefficient values with a finite number of digits as physical implementation is 

expected. This process is usually referred to as quantization. 

Only fixed point, two’s complement, biquad’s coefficients representation  is considered. 

Fig. 3 shows the transfer function’s pole locations in the z-plane for various binary word 

lengths used to represent the coefficient values. Note that for all cases the poles are confined 

within the unit circle which confirms our claim that parallel realization will mitigate stability 

problems in IIR realizations. 
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Fig. 3 z – plane pole location of the BP LSM filter, a) unit circle, b) zoomed poles location. 

The following notation was used for the quantized version of the filter coefficients, 

Q[N F]. N stands for the number of bits of the whole digital word and F for the number of 

bits allocated for the digits after the decimal point. Accordingly, Q[N F] will populate the 

range (RNG) in increments (INC) as follows: 
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where cmax is the coefficient with maximal absolute value, M is the number of bits allocated 
for the integer part plus the sign, and F is the number of bits allocated for the fractional part. 
The symbol ⌈ ⌉ denotes the ceiling function. Two operations are performed over 
coefficients: first, scaling is done with the help of the results of (8a) and appropriate number 
of bits is determined for integer and fractional part; second, coefficients are quantized, i.e. 
mapped to appropriate values in range given with (8b) using round to nearest method. 

Decimal and hexadecimal representation of coefficients quantized with Q[16 14] are 
given in second and third row of Table 2, respectively. Observing Table 2, one can see 
that the coefficient with maximal absolute value is the d1 coefficient of the first section, 
therefore M = 2, F = 14 are required for 16 bit representation. For these parameters range 
RNG = [−2, 1.99993896484375] is covered in INC = 0.00006103515625 increments. 

Assuming absence of any other source of computational error or noise we calculated the 
attenuation characteristic of the filter for different quantization formats of the coefficients as 
discussed above. The results for the example BP LSM filter are depicted in Fig. 4. 

Observing Fig. 4, one can conclude that variants with 16-bit word length and higher, 
produce amplitude characteristics that start to agree with the one obtained with full 
precision. Therefore, 16-bits representation can be used if attenuation larger than 50 dBs 
is not required (observing the lower stop-band in Fig. 5). Of course, one can use Q[24 22] 
or Q[32 30] if more accurate design is required. 
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Table 2 Original and quantized filter coefficients 

 Numerator 

F
u

ll
 p

re
ci

si
o

n
 

cell c0 c1 c2 

I +0.0033086494281706663 -0.0018617614854014842 -0.0051704109135721505 
II +0.0067062285319410561 +0.0085906290469084413 +0.0018844005149673854 
III -0.044039453119340377 -0.0120564809558326 +0.031982972163507775 
IV +0.06277875243767074  0 -0.062778752453249653 
V -0.029334088252293972 +0.015384970101239978 +0.044719058353533951 
VI -0.006864819539353288 -0.013389525398100878 -0.00652470585874759 
VII +0.0074447307119548771 +0.0032630379244648162 -0.0041816927874900617 

Q
[1

6
 1

4
] 

d
ec

im
al

  

I +0.00329589843750 -0.00189208984375 -0.00518798828125 
II +0.00671386718750 +0.00860595703125 +0.00189208984375 
III -0.04406738281250 -0.01208496093750 +0.03198242187500 
IV +0.06280517578125 +0.00000000000000 -0.06280517578125 
V -0.02935791015625 +0.01538085937500 +0.04473876953125 
VI -0.00683593750000 -0.01336669921875 -0.00653076171875 
VII +0.00744628906250 +0.00323486328125 -0.00421142578125 

h
ex

ad
ec

im
al

  

I 0036 FFE1 FFAB 
II 006E 008D 001F 
III FD2E FF3A 020C 
IV 0405 0000 FBFB 
V FE1F 00FC 02DD 
VI FF90 FF25 FF95 
VII 007A 0035 FFBB 

 

 Denominator 

F
u

ll
 p

re
ci

si
o

n
 

cell d1 d2 

I -1.886085860514888 +0.98894784642499967 

II -1.8601293281281488 +0.96799935587139696 

III -1.8323004517946606 +0.95057717438073264 

IV -1.8083338880121447 +0.94157013740084117 

V -1.7935719318070145 +0.94450186279953363 

VI -1.7923157567661698 +0.96044412883386077 

VII -1.8052459566148433 +0.98552821289667847 

Q
[1

6
 1

4
] 

d
ec

im
al

  

I -1.88610839843750 +0.98895263671875 

II -1.86010742187500 +0.96801757812500 

III -1.83227539062500 +0.95056152343750 

IV -1.80834960937500 +0.94158935546875 

V -1.79357910156250 +0.94451904296875 

VI -1.79229736328125 +0.96044921875000 

VII -1.80523681640625 +0.98553466796875 

h
ex

ad
ec

im
al

  

I 874A 3F4B 

II 88F4 3DF4 

III 8ABC 3CD6 

IV 8C44 3C43 

V 8D36 3C73 

VI 8D4B 3D78 

VII 8C77 3F13 

After 16-bits representation is adopted, we perform an additional verification, but now 

in the time domain. Fig. 5 depicts the results of time domain simulation using coefficients 
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quantized with Q[16 14]. Both signals and appropriate spectra are presented. The spectra 

shown in the Fig. 5b and 5d are obtained with NFFT = 65536 point FFT.  

The input test signal is 

 0 1 2 3sin(2π ) sin(2π ) sin(2π ) sin(2π )ins f t f t f t f t    ,                   (9) 

with: f0=3 kHz, f1=374.60 Hz, f2=749.97 Hz, and f3=5999.76 Hz. The bandwidth is 

limited by  [fL, fU] = [2583.56, 3483.56] Hz. The values of the test frequencies are picked 

to match integer multiples of FFT resolution bin (fs/NFFT) in order to minimize spectral 

leakage in the resulting FFT image of the spectrum. 

 
a) 

 
b) 

Fig. 4 Attenuation of the 14
th

 order LSM Band-Pass Filter: a) Pass-Band, b) Stop-Band 
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Observing the spectra in Fig. 5b and 5d one can see that after filtering there is only 

one dominant bin at frequency f0, while the others are filtered out. 

 

Fig. 5 Time domain simulation of the BP filter mathematical model:  

a) input waveform, b) input spectrum, c) output waveform and d) output spectrum 

For hardware implementation a versatile VHDL code was written. It combines second 

and/or first order cells presented in Fig. 1b. Illustrative schematics of the described 

second order TDFII and top-level filter cells are shown in Fig. 6a and 6b, respectively. 

Appropriate number/position of bits at each signal path is labeled as well.  

 

Fig. 6 Schematic representation of a) second order TDF II and b) top level filter cell 

Each delay block (z
-1

) is realized as a register. Parallel multipliers and ripple carry 

adders (with add and subtract functions) are designed for multiplication and summing 

operations, respectively. According to Fig. 6a it can be concluded that second order cell 

requires five multipliers and four adders. On the other hand, assuming zero values for c2,i 
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and d2,i coefficients first order cell stems out from second order one. Therefore, first order 

cell will require three multipliers and only two adders. 

To ensure successful synthesis whole filter is described structurally. Each individual 

block, starting from  basic ones, i.e. multipliers, adders and registers up to top level entity 

is described. Therefore, no predesigned structures are assumed making the code as 

portable as possible. 

TDF_IIi represents first or second order TDF II cell. Din, and Dout are input and 

output digital word. Index bounds and constants in Fig. 6b are defined as follows,  

    1-/2 + 2) ,mod(,,0 prrI   , (10a) 
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where I is the index of the filter’s section and J is the number of adders used to sum 

outputs of the sections. The order of the resulting transfer function is marked with r. It 

should be emphasized that the order of the resulting Band-Pass/Stop transfer function is 

doubled compared to Low-Pass prototype function. Symbols ⌊ ⌋, max(x) and mod(x,y) 

denotes floor function, maximal value, and modulo operator (reminder after x by y 

division), respectively. Parameter p is the flag that detects existence (1-exist, 0-do not 

exist) of two real poles/residues in resulting Band-Pass/Stop transfer function. If this is 

the case, two first order sections are generated. Finally, k represents direct term of partial 

fraction expansion of the resulting transfer function. This term is always zero, if the order 

of the denominator polynomial, m, is less than the order of the numerator polynomial, n. 

Otherwise, this term is of the order m – n. In filter’s transfer functions it can only happen 

to be m = n which gives k as a simple constant factor. Therefore, a branch with the k 

factor is nothing but a simple buffer stage. Possible values for parameters k and p are 

given in Table 3.  

Table 3 Possible values for p and k parameters 

Filter type 
even order odd order 

p k p k 

High-Pass 0 1 0 1 

Band-Pass 0 0 1 0 

Band-Stop 0 1 1 1 

Accordingly, VHDL entity accepts generics and has interface ports shown in Table 4. 

VHDL code sample is given below.  

Next, VHDL description was verified by logic simulation with the excitation 

described in the previous section. It is important to mention that when dealing with 

hardware implementation two important effects must be examined, namely: saturation  

and round-off noise. Saturation is intensely dependent of the input signal waveform and 

filter’s architecture and coefficient values. Even more, internal states usually saturate 

with different speeds making the tracking of the saturation process a non trivial task.  
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Table 4 Generics and ports of VHDL entity 

 Symbol Description 

g
en

er
ic

s 

N word length 

F number of bits after decimal point 

r order of resulting transfer function 

p flag for detecting two real poles/residues 

k direct term of partial fraction expansion 

cfs coefficients of the filter 

p
o

rt
s 

clk clock signal at sample rate frequency 

rst reset signal active at negative level 

x input N bit signal 

y output N bit signal 

Round-off noise is the direct consequence of a fixed-point representation. Simply, 
product of two N-bit fixed-point numbers is a 2N bit number. This product must eventually be 
quantized to N-bits by rounding or truncation, which results with the round-off noise. A 
number of techniques can be used to mitigate this problem [21], [22].  

The most commonly used technique to prevent saturation and round-off noise is the 
dynamic range scaling (or simply scaling) of the input signal prior to filtering action. 
Namely, each input signal value should be scaled down into a specific range which ideally, 
ensures no saturation in any of the internal and external nodes of the filter. Luckily, since 
two’s complement representation is exploited, saturation of the internal nodes is to be allowed 
since it will be interpreted as an overflow (wrap-around) effect. E.g. an overflow occurs when 
the sum of two positive numbers yields a negative result and vice versa, otherwise the result is 
correct. Similar occurrence happens when the internal state values reach boundaries of the 
dynamic range, i.e. first larger/smaller value, then the maximal/minimal is interpreted as the 
minimal/maximal value of the range. This can be tolerated as long as the final values of the 
output signal are valid, i.e. wrap-around does not coincide with the moment of the output 
signal acquisition. This is where parallel realization, adopted in this work, again outperforms 
the cascade one. Saturation conditions are drastically relaxed when using parallel realization, 
especially as the order of filter increases. Occurrence of wrap-around is reduced as well. This 
is simply because no matter how large the filter order is, all second and/or first order cells 
process the input signal independently of each other. Therefore, scaling of the input signal 
applies to all cells at once. The bottleneck is, of course, the output summing node. 
Nevertheless, net sensitivity to saturation is reduced when constrains regarding saturation are 
relaxed at each individual cell. One may also choose to omit scaling and relay completely on 
two’s complement representation, but this technique requires sound knowledge about the 
input signal waveform and algorithm for tracking and handling wrap-around effect. Also, all 
possible cases have to be predicted, therefore extensive simulations are required. This is 
usually too expensive in the real-world applications, therefore some form of scaling is 
always applied. Moreover, scaling technique is quite easy to implement in the digital 
domain, knowing that each scaling down/up by two is nothing but the one simple shift 
right/left operation. Accordingly, scaling operation can be implemented as tunable 
(programmable). Even non-linear scaling can be implemented if high accuracy is required. 
Unfortunately, there is no scaling technique which provides closed-form, general solution 
and it all depends on concrete application at the end of the day. This implies that some 
exploration of the time domain simulation results is inevitable in the design process to 
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determine the appropriate scaling factor. Finally, combining several techniques to cope 
saturation and round-off noise may result with more efficient solution, but scaling with 
fixed coefficient, because of its simplicity, is still considered suitable for verity of applications 
and therefore utilized in this design, as well.  

Since our test signal is known in advance, fixed scaling coefficient is to be determined. 
Finding maximum and minimum of the function given in (3), one can determinate the range 
of the input signal, i.e. RNGin = [−3.73, 3.73].  Using time domain simulation scaling factor 
of four turned out to be suitable. This can be also intuitively concluded when looking at the 
range of filter’s coefficients. Namely, dividing RNGin with four gives RNGnew = [−0.93, 
0.93], which is smaller than half of the filter’s coefficient range RNG = [−2, 
1.99993896484375], leaving enough headroom for values of internal states to spread without 
reaching saturation. After filtering, output is scaled up and the obtained results are presented 
in Fig. 7. 

 
Fig. 7 Time domain simulation of the BP filter VHDL model:  

a) output waveform, b) output spectrum 

Sound representation of signal’s spectrum using FFT usually requires a large number 
of samples. This inevitably leads to longer time domain simulation. To minimize duration 
of the time domain logic simulation, a smaller number of FFT points, compared with a 
case with purely mathematical model which simulates faster (Fig. 5b, 5d), is desired. 
Therefore, NFFT = 16384 is chosen for representing the output signal spectrum in Fig 7b. 
It turns out that this number gives a satisfactory compromise between simulation time 
and FFT accuracy. Finally, comparing Fig. 7a with Fig. 5c and Fig. 7b with Fig. 5d, one 
can see that the time and frequency domains of the output signal obtained by simulating 
mathematical and hardware models of the filter match. This proves that hardware 
representation successfully implements the desired behavior of the designed filter. 

6. CONCLUSION 

With this case study we intended to fulfill two main goals. First, we wanted to raise 
the awareness of the salient advantages of the CMAC filtering functions as compared 
with their non-monotonic counterparts. To achieve this, we gave a short overview of the 
properties of CMAC amplitude characteristics. The second goal was to give, for the first 
time, design results characterizing the amplitude characteristic of band-pass IIR digital 
filters. Accordingly, we went through several steps. First, we gave arguments on the 
choice of IIR filters. Then, we gave arguments for the parallel implementation of digital 
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filters that was used throughout the design process. Next, we described and exemplified 
the complete design procedure including the verification steps needed to support the 
design decisions taken on the way. All that was performed on the example of a band-pass 
CMAC IIR digital filter, a solution that was here reported for the very first time. 
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