Zdravko Stanimirović, Ivanka Stanimirović, Slobodanka Galović, Katarina Đorđević, Edin Suljovrujić

DOI Number
First page
Last page


Irrational and transcendental functions can often be seen in signal processing or physical phenomena analysis as consequences of fractional-order and distributed-order models that result in fractional or partial differential equations. In cases when finding solution in analytical form tends to be difficult or impossible, numerical calculations such as Haar wavelet operational matrix method can be used.  Haar wavelet establishes a direct procedure for transfer function inversion using the wavelet operational matrix for orthogonal function set integration. In this paper an inverse Laplace transform of irrational and transcendental transfer functions using Haar wavelet operational matrix is proposed. Results for a number inverse Laplace transforms are numerically solved and compared with the analytical solutions and solutions provided by commonly used Invlap and NILT algorithms. This approach is useful when the original cannot be represented by an analytical formula and validity of the obtained result needs to be crosschecked and error estimated.


Haar wavelet, Laplace transform, maximum resolution level, numerical inversion, operational matrix

Full Text:



G. Hariharan and K. Kannan, "A comparative study of Haar Wavelet Method and Homotropy Perturbation Method for solving one-dimensional Reaction-Diffusion Equations", Int. J. Appl. Math. Comput., vol. 3, no. 1, pp. 21-34, 2011.

Y. Chen, Y. Wu, Y. Cui, Z. Wang and D. Jin, "Wavelet method for a class of fractional convection-diffusion equation with variable coefficients", J. Comput. Sci., vol. 1, no. 3, pp. 146-149, 2010.

N. M. Bujurke, S. C. Shiralashetti and C. S. Salimath, "An application of single-term Haar wavelet series in the solution of nonlinear oscillator equations", J. Comput. Appl. Math., vol. 227, no. 2, pp. 234-244, 2009.

V. Bruni, B. Piccoli and D. Vitulano, "Wavelets and partial differential equations for image denoising", Electron. Lett. Comput. Vis. Image Anal., vol. 6, no. 2, pp. 36-53, 2008.

G. Hariharan and K. Kannan, "An Overview of Haar Wavelet Method for Solving Differential and Integral Equations", World Appl. Sci. J., vol. 23, no. 12, pp. 1-14, 2013.

C. H. Hsiao and S.P. Wu, "Numerical solution of time-varying functional differential equations via Haar wavelets", Appl. Math. Comput., vol. 188, no. 1, pp. 1049-1058, 2007.

N. Salamat, M. M. S. Missen and V. B. Surya Prasath, "Recent developments in computational color image denoising with PDEs to deep learning: a review", Artif. Intell. Rev., vol. 54, pp. 6245–6276, 2021.

C. Tian and Y. Chen, "Image Segmentation and Denoising Algorithm Based on Partial Differential Equations", IEEE Sensors J., vol. 20, no. 20, pp. 11935-11942, 2020.

W. Cai, W. Chen, J. Fang and S. Holm, "A Survey on Fractional Derivative Modeling of Power-Law Frequency-Dependent Viscous Dissipative and Scattering Attenuation in Acoustic Wave Propagation", ASME. Appl. Mech. Rev., vol. 70, no. 3, p. 030802, 2018.

T. Rabczuk, H. Ren and X. Zhuang, "A Nonlocal Operator Method for Partial Differential Equations with Application to Electromagnetic Waveguide Problem", Comput. Mater. Continua, vol. 59, no. 1, pp. 31-55, 2019.

H. Sheng, Y. Li and Y.Q. Chen, "Application of numerical inverse Laplace transform algorithms in fractional calculus", J. Franklin Institute, vol. 348, no. 2, pp. 315-330, 2011.

S. M. Aznam, A. Hussin, "Numerical Method for Inverse Laplace Transform with Haar Wavelet Operational Matrix", Mal. J. Fundam. Appl. Sci., vol. 8, no. 4, pp. 204-210, 2012.

J. L. Wu, C. H. Chen and C. F. Chen, "Numerical inversion of Laplace transform using Haar wavelet operational matrices", IEEE Trans. Circ. Syst. I: Fundam. Theory Appl., vol. 48, no. 1, pp. 120-122, 2001.

C. H. Hsiao, "Numerical inversion of Laplace transform via wavelet in ordinary differential equations", Comput. Methods Differ. Equ., vol. 3, pp. 186-194, 2014.

J. A. C. Weideman, "Algorithms for Parameter Selection in the Weeks Method for Inverting the Laplace Transform", SIAM J. Sci. Comput., vol. 21, pp. 111-128, 1999.

J. Kotyk, "MATLAB Algorithms for The Laplace Transform Inversion", In Proceedings of the MATLAB Conference, Prague, Czech Republic, 2005, pp. 1-19.

F. R. De Hoog, J. H. Knight and A. N. Stokes, "An improved method for numerical inversion of Laplace transforms", SIAM J. Sci. Stat. Comput., vol. 3, no. 3, pp. 357-366, 1982.

H. Stehfest, "Algorithm 368: Numerical Inversion of Laplace Transform", Commun. ACM, vol. 13, no. 1, pp. 47-49, 1970.

N. Al-Zubaidi Smith and L. Brancik, "Comparative Study on One-Dimensional Numerical Inverse Laplace Transform Methods for Electrical Engineering", Elektrorevue, vol. 18, no. 1, pp. 1-7, 2016.

D. J. Halsted and D. E. Brown, "Zakian's technique for inverting Laplace transforms", Chem. Eng. J., vol. 3, pp. 312-313, 1972.

G. Chen and P. Huib, "Pulsed photothermal modeling of composite samples based on transmission-line theory of heat conduction", Thin Solid Films, vol. 339, pp. 58-67, 1999.

M. Sorrenti, M. Di Sciuva, J. Majak and F. Auriemma, "Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method", Mech. Compos. Mater., vol. 57, no.1, 2021.


  • There are currently no refbacks.

ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626