Neda Lj. Stanojevic, Dragana K. Markushev, Sanja M. Aleksic, Dragan S. Pantic, Dragan V. Lukic, Marica N. Popovic, Dragan D. Markushev

DOI Number
First page
Last page


This paper presents a new approach to the thermal characterization of aluminum, based on the electro-acoustic analogy between the thermoelastic component of the photoacoustic signal and the passive RC low-pass filter. The analogies were used to calculate the characteristic thermoelastic cut-off frequencies of the photoacoustic component and obtain their relationship with the thickness of the aluminum samples. Detailed numerical analysis showed that the required relationship is linear in the log-log scale and can serve as a reference curve for the given material. The results of the numerical analysis were also confirmed experimentally.


electro-acoustic, thermoelastic component, photoacoustic signal, RC filter

Full Text:



D. Almond and P. Patel, Photothermal Science and Techniques, Chapman & Hall, London, 1996.

S. E. Bialkowski, N. G. C. Astrath, M. A. Proskurnin, Photothermal Spectroscopy Methods for Chemical Analysis, 2nd Edition, New York: John Wiley, 2019.

A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids", J. Appl. Phys., vol. 47, p. 64-69, 1976.

F. McDonald and G. Wetsel, "Generalized theory of the photoacoustic effect", J. Appl. Phys., vol. 49, pp. 2313-2322, 1978.

L. F. Perondi and L. C. M. Miranda, "Minimal-volume photoacoustic cell measurement of thermal diffusivity: Effect of the thermoelastic sample bending", J. Appl. Phys, vol. 62, no. 7, pp. 2955-2959, 1987.

A. L. Glazov and K. L. Muratikov, "Generalized thermoelastic effect in real metals and its application for describing photoacoustic experiments with al membranes", J. Appl. Phys., vol. 128, no. 9, p. 095106, 2020.

L. D. Paarman, Design and analysis of analog filters, Kluwer Academic Publishers, USA, 2001.

L. E. Frenzel Jr., Principals of Electronic Communications Systems, Fourth Edition, McGraw-Hill, 2016.

C. K. Alexander, M. N. O. Sadiku, Fundamentals of electric circuits, McGraw-Hill Education, USA, 2017.

Okawa Electric Design (2019), RC Low-pass Filter Design Tool. Available at: http://sim.okawa-denshi.jp/en/CRlowkeisan.htm

A. Somer, F. Camilotti, G. Costa, C. Bonardi, A. Novatski, A. Andrade, V. Kozlowski Jr and G. Cruz, "The thermoelastic bending and thermal diffusion processes influence on photoacoustic signal generation using open photoacoustic cell technique", J. Appl. Phys., vol. 114, no. 6, p. 063503, 2013.

A. Somer, A. Gon¸calves, T. V. Moreno, G. K. da Cruz, M. L. Baesso, N. G. C. Astrath and A. Novatski, "Photoacoustic signal with two heating sources: theoretical predictions and experimental results for the open photoacoustic cell technique", Meas. Sci. Technol., vol. 31, no. 7, p. 075202, 2020.

J. A. Balderas-Lopez and A. Mandelis, "Thermal diffusivity measurements in the photoacoustic open-cell configuration using simple signal normalization techniques", J. Appl. Phys., vol. 90, no. 5, pp. 2273-2279, 2001.

B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, Wiley, New York, 1960.

G. Roussett, F. Lepoutre and L. Bertrand, "Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals", J. Appl. Phys., vol. 54, pp. 2383-2391, 1983.

D. D. Markushev, J. Ordonez-Miranda, M. D. Rabasovic, M. Chirtoc, D. M. Todorovic, S. E. Bialkowski, D. Korte and M. Franko, "Thermal and elastic characterization of glassy carbon thin films by photoacoustic measurements", The European Phys. J. Plus, vol. 132, no. 33, pp. 1-9, 2017.

D. D. Markushev, J. Ordonez-Miranda, M. D. Rabasović, S. Galović, D. M. Todorović and S. E. Bialkowski, "Effect of the absorption coefficient of aluminium plates on their thermoelastic bending in photoacoustic experiments", J. Appl. Phys., vol. 117, p. 245309, 2015.

J. R de Laeter, et al, "Atomic weights of the elements: Review 2000", Pure Appl. Chem., vol. 75, pp. 683-800, 2003.

W. M C. Sansen, Analog design essentials. Dordrecht, The Netherlands: Springer. pp. 157-163.

R. K. Rao Yarlagadda, Analog and Digital Signals and Systems. Springer Science & Business Media. 2010, p. 243.

C. L. Phillips, J. M. Parr and E. A. Riskin, Signals, systems and Transforms. Prentice Hall. 2007.

J. P. Hespanha, Linear System Theory. Princeton University Press, 2009.

D. D. Markushev, M. D. Rabasović, D. M. Todorović, S. Galović and S. E. Bialkowski, "Photoacoustic signal and noise analysis for Si thin plate: Signal correction in frequency domain", Rev. Sci. Instrum., vol. 86, p. 035110, 2015.

M. N. Popovic, M. V. Nesic, S. Ciric-Kostic, M. Zivanov, D. D. Markushev, M. D. Rabasovic, S. P. Galovic, "Helmholtz Resonances in Photoacoustic Experiment with Laser-Sintered Polyamide Including Thermal Memory of Samples", Int. J. Thermophys., vol. 37, p. 116, 2016.

S. M. Aleksić, D. K. Markushev, D. S. Pantić, M. D. Rabasović, D. D. Markushev and D. М. Todorović, "Electro-acoustic influence of measuring system on the photoacoustic signal amplitude and phase in frequency domain", FU Phys Chem Tech, vol. 14, no. 1, pp. 9-20, 2016.

S. Galovic, Z. Soskic and M. Popovic, "Analysis of photothermal response of thin solid films by analogy with passive linear electric networks", Thermal Sci., vol. 13, no. 4, pp. 129-142, 2009.

R. Deaton, M. Garzon and R. Yasmin, "Systems of axon-like circuits for self-assembled and self-controlled growth of bioelectric networks", Sci. Reports, vol. 12, p. 13371, 2022.

P. Alcami and A. El Hady, "Axonal Computations", Front. Cell. Neurosci., vol. 13, p. 413, 2019.


  • There are currently no refbacks.

ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626