Stevica S Cvetkovic, Saša V Nikolić, Slobodan Ilic

DOI Number
First page
Last page


Although many indoor-outdoor image classification methods have been proposed in the literature, most of them have omitted comparison with basic methods to justify the need for complex feature extraction and classification procedures. In this paper we propose a relatively simple but highly accurate method for indoor-outdoor image classification, based on combination of carefully engineered MPEG-7 color and texture descriptors. In order to determine the optimal combination of descriptors which is characterized by efficient extraction, compact representation and high accuracy, we conducted comprehensive empirical tests over several color and texture descriptors. The optimal descriptors combination was used for training and testing of a binary SVM classifier. We have shown that the proper descriptors preprocessing before SVM classification has significant impact on the final result. Comprehensive experimental evaluation shows that the proposed method outperforms several more complex indoor-outdoor image classification techniques on a couple of public datasets.

Full Text:



R. Datta, D. Joshi, J. Li, J. Z. Wang, “Image retrieval: ideas, influences, and trends of the new age,” ACM Computing Surveys, vol. 40, no. 2, pp. 1-60, 2008.

S. Bianco, G. Ciocca, C. Cusano, R. Schettini, “Improving color constancy using indoor-outdoor image classification,” IEEE Transactions on Image Processing, vol. 17, no. 12, pp. 2381-2392, 2008.

L. Zhang, M. Li, H.-J. Zhang, “Boosting image orientation detection with indoor vs. outdoor classification,” Proceedings of WACV ’02, Washington, DC, USA, IEEE Computer Society, 2002, pp. 95-99.

A. Vailaya, M. A. T. Figueiredo, A. K. Jain, H.-J Zhang, “Image classification for content-based indexing,” IEEE Transactions on Image Processing, vol. 10, no. 1, pp. 117-130, 2001.

J. Collier, A. Ramirez-Serrano, “Environment classification for indoor/outdoor robotic mapping,” Proceedings of Canadian Conference on Computer and Robot Vision CRV’09, Kelowna, British Columbia, Canada, 2009, pp. 276-283.

M. Boutell, J. Luo, “Beyond pixels: exploiting camera metadata for photo classification,” Pattern Recognition, vol. 38, no. 6, pp. 935-946, 2005.

X. Liu, L. Zhang, M. Li, H. Zhang, D. Wang, ”Boosting image classification with LDA-based feature combination for digital photograph management,” Pattern Recognition, vol. 38, pp. 887-901, 2005.

N. Serrano, A. Savakis, J. Luo, “Improved scene classification using efficient low-level features and semantic cues,” Pattern Recognition, 37(9), pp. 1773-1784, 2004.

L. Lu, K. Toyama, G. D. Hager, ”A two level approach for scene recognition,” Proceedings of CVPR’05, Washington, DC, IEEE Computer Society, 2005, pp. 688-695.

W. Kim, J. Park, C. Kim, “A novel method for efficient indoor–outdoor image classification,” Journal of Signal Processing Systems, vol. 61, no. 3, pp. 251-258, 2010.

H. Eidenberger, „Statistical analysis of content-based MPEG-7 descriptors for image retrieval,” Multimedia Systems, vol. 10, no. 2, pp. 84-97, 2004.

T. Deselaers, D. Keysers, H. Ney, “Features for image retrieval: A quantitative comparison,” Proceedings of DAGM SSPR’04, Tübingen, Germany, Springer, 2004, pp. 228-236.

T. Deselaers, D. Keysers, H. Ney, “Features for image retrieval: an experimental comparison,” Information Retrieval, vol. 11, pp. 77-107, 2008.

B.S. Manjunath, P. Salembier, T. Sikora, Introduction to MPEG-7, San Francisco, CA, USA, Wiley, 2002.

S. Chang, T. Sikora, A. Puri, “Overview of the MPEG-7 standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 6, pp. 688-695, 2001.

S. N. Lindstaedt, R. Mörzinger, R. Sorschag, V. Pammer, G. Thallinger, “Automatic image annotation using visual content and folksonomies,” Multimedia Tools and Applications, vol. 42, no. 1, pp. 97-113, 2009.

C. G. M. Snoek, M. Worring, A. W. M. Smeulders, “Early versus late fusion in semantic video analysis,” Proceedings of ACM Multimedia ’05, New York, NY, USA, ACM, 2005, pp. 399-402.

N. Serrano, A. Savakis, A. Luo, “A computationally efficient approach to indoor/outdoor scene classification,” Proceedings of ICPR’02, Quebec City, Canada, 2002, pp. 146-149.

L. Gupta, V. Pathangay, A. Patra, A. Dyana, S. Das, “Indoor versus outdoor scene classification using probabilistic neural network,” EURASIP Journal on Advances in Signal Processing, pp. 1-11, 2007.

S. Park, “Content-based image classification using a neural network,” Pattern Recognition Letters, vol. 25, no. 3, pp. 287-300, 2004.

M. Szummer, R. W. Picard, “Indoor-outdoor image classification,” Proceedings of IWCBAIVD’98, IEEE Computer Society, 1998, pp. 42-51.

A. Payne, S. Singh, “Indoor vs. outdoor scene classification in digital photographs,” Pattern Recognition, vol. 38, no. 10, 2005, pp. 1533-1545, 2005.

H. Zhang, A. C. Berg, M. Maire, J. Malik, “SVM-KNN: discriminative nearest neighbor classification for visual category recognition,” in Proceedings of CVPR’06, New York, NY, USA, 2006, pp. 2126-2136.

M. Varma, D. Ray, “Learning the discriminative power-invariance trade-off,” Proceedings of ICCV’07, Rio de Janeiro, Brazil, 2007, pp. 1-8. Avilable: http://dx.doi.org/10.1109/ICCV.2007.4408875

B. S. Manjunath, J. R. Ohm, V.V. Vinod, A. Yamada, “Color and texture descriptors,” IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no. 6, pp. 703-715, 2001.

A. Yamada, M. Pickering, S. Jeannin, L. Cieplinski, J. R. Ohm, M. Kim, MPEG-7 Visual part of experimentation Model Version 10.0. ISO/IEC JTC1/SC29/WG11/N4063, 2001.

R. Datta, J. Li, J. Z. Wang, “Content-based image retrieval: approaches and trends of the new age,” Proceedings ACM SIGMM MIR ’05, New York, NY, USA, ACM, 2005, pp. 253-262.

S. Ayache, G. Quénot, J. Gensel, “Classifier fusion for SVM-based multimedia semantic indexing,” Proceedings of ECIR’07, Berlin, Germany, Springer-Verlag, 2007, pp. 494-504.

R. J. Larsen, M. L. Marx. An introduction to mathematical statistics and its applications, Pearson Prentice Hall, 2006.

J. Z. Wang, J. Li, G. Wiederhold, “Simplicity: semantics-sensitive integrated matching for picture libraries,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 9, pp. 947-963, 2001.

M. Bastan, H. Cam, U. Gudukbay, O. Ulusoy, “BilVideo-7: an MPEG-7- compatible video indexing and retrieval system,” IEEE Multimedia, vol. 17, pp. 62-73, 2010.

C.-C. Chang, C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1-27, 2011.

J. Lee, J. Nang, “Content-based image retrieval method using the relative location of multiple ROIs,” Advances in Electrical and Computer Engineering, vol. 11, no. 3, pp. 85 – 90, 2011.


  • There are currently no refbacks.

ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626