Zoran Jakšić, Marko Obradov, Slobodan Vuković, Milivoj Belić

DOI Number
First page
Last page


We consider the possibility to use plasmonics to enhance light trapping in such semiconductor detectors as solar cells and infrared detectors for night vision. Plasmonic structures can transform propagating electromagnetic waves into evanescent waves with the local density of states vastly increased within subwavelength volumes compared to the free space, thus surpassing the conventional methods for photon management. We show how one may utilize plasmonic nanoparticles both to squeeze the optical field into the active region and to increase the optical path by Mie scattering, apply ordered plasmonic nanocomposites (subwavelength plasmonic crystals or plasmonic metamaterials), or design nanoantennas to maximize absorption within the detector. We show that many approaches used for solar cells can be also utilized in infrared range if different redshifting strategies are applied.

Full Text:



A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thin-film solar cells,” Science, vol. 285, no. 5428, pp. 692-698, 1999.

A. McEvoy, T. Markvart, and L. Castañer, Solar Cells, Elsevier, Amsterdam, 2013.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics, vol. 6, no. 3, pp. 153-161, 2012.

S. J. Fonash, Solar Cell Device Physics, Elsevier Amsterdam, 2010.

A. Rogalski, Infrared Detectors, CRC Press, Bocca Raton, 2010.

R. B. Wehrspohn, and J. Ůpping, “3D photonic crystals for photon management in solar cells,” Journal of Optics, vol. 14, no. 2, 2012.

Z. Jakšić, and Z. Djurić, “Cavity enhancement of auger-suppressed detectors: A way to background-limited room-temperature operation in 3-14 μm range,” IEEE J. Sel. Top. Quant. Electr., vol. 10, no. 4, pp. 771-776, 2004.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van De Groep, J. Garcia De Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett., vol. 99, no. 15, 2011.

I. M. Bassett, W. T. Welford, and R. Winston, "Nonimaging Optics for Flux Concentration," Progress in Optics 27, E. Wolf, ed., pp. 161-226: Elsevier, 1989.

W. T. Welford, and R. Winston, High Collection Nonimaging Optics, Academic Press, 1989.

R. Winston, J. C. Minano, and P. G. Benitez, Nonimaging Optics, Academic Press, 2005.

D. H. Raguin, and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt., vol. 32, no. 7, pp. 1154-1167, 1993.

M. S. Ünlü, and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys., vol. 78, no. 2, pp. 607-639, 1995.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett., vol. 72, no. 19, pp. 2376-2378, 1998.

Z. Djurić, Z. Jakšić, D. Randjelović, T. Danković, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol., vol. 40, no. 1, pp. 25-32, 1999.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett., vol. 10, no. 2, pp. 439-445, 2010.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Scientific Reports, vol. 3, 2013.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824-830, 2003.

H. A. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, no. 3, pp. 205-213, 2010.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater., vol. 9, no. 3, pp. 193-204, 2010.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys., vol. 101, no. 9, 2007.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express, vol. 18, no. 13, pp. A237-A245, 2010.

K. R. Catchpole, and A. Polman, “Plasmonic solar cells,” Opt. Express, vol. 16, no. 26, pp. 21793-21800, 2008.

S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Science+Business Media, New York, NY, 2007.

W. Cai, and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, Dordrecht , Germany, 2009.

S. A. Ramakrishna, and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, SPIE Press Bellingham, WA & CRC Press, Taylor & Francis Group, Boca Raton FL, 2009.

U. Leonhardt, “Optical Conformal Mapping,” Science, vol. 312, no. 5781, pp. 1777-1780, 2006.

U. Leonhardt, and T. G. Philbin, "Transformation Optics and the Geometry of Light," Progress in Optics, E. Wolf, ed., pp. 69-152, Amsterdam, The Netherlands: Elsevier Science & Technology 2009.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science, vol. 312, no. 5781, pp. 1780-1782, 2006.

E. H. Putley, "Thermal Detectors," Optical and Infrared Detectors, R. J. Keyes, ed., Berlin: Springer-Verlag, 1983.

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Review of Scientific Instruments, vol. 75, no. 4, pp. 1134-1148, 2004.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys., vol. 92, no. 7, pp. 4117-4122, 2002.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys., vol. 92, no. 3, pp. 1668-1674, 2002.

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am., vol. 72, pp. 899-907, 1982.

E. Yablonovitch, and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Transactions on Electron Devices, vol. ED-29, no. 2, pp. 300-305, 1982.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Transactions on Electron Devices, vol. ED-31, no. 5, pp. 711-716, 1984.

P. Campbell, and M. A. Green, “Limiting efficiency of silicon solar cells under concentrated sunlight,” IEEE Transactions on Electron Devices, vol. ED-33, no. 2, pp. 234-239, 1986.

W. Shockley, and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510-519, 1961.

M. Born, and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press, Cambridge 1999.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Nat. Acad. Sci. U.S.A., vol. 107, no. 41, pp. 17491-17496, 2010.

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett., vol. 109, no. 17, 2012.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell Light Trapping beyond the Ray Optic Limit,” Nano Lett., vol. 12, no. 1, pp. 214-218, 2012.

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light Trapping Textures Designed by Electromagnetic Optimization for Subwavelength Thick Solar Cells,” IEEE Journal of Photovoltaics, 2013.

A. Boltasseva, and H. A. Atwater, “Low-Loss Plasmonic Metamaterials,” Science, vol. 331, no. 6015, pp. 290-291, 2011.

P. Avouris, and M. Freitag, “Graphene photonics, plasmonics, and optoelectronics,” IEEE J. Sel. Top. Quant. Electr., vol. 20, no. 1, 2014.

Z. Jakšić, S. M. Vuković, J. Buha, and J. Matovic, “Nanomembrane-Based Plasmonics,” J. Nanophotonics, vol. 5, pp. 051818.1-20, 2011.

S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys., vol. 98, no. 1, pp. 1-10, 2005.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science, vol. 311, no. 5758, pp. 189-193, 2006.

R. B. M. Schasfoort, and A. J. Tudos, eds., “Handbook of Surface Plasmon Resonance,” Cambridge, UK: Royal Society of Chemistry 2008.

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Scientific reports, vol. 2, pp. 0681.1-6, 2012.

M. Maksimović, and Z. Jakšić, “Emittance and absorptance tailoring by negative refractive index metamaterial-based Cantor multilayers,” J. Opt. A-Pure Appl. Opt., vol. 8, no. 3, pp. 355-362, 2006.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater., vol. 11, no. 12, pp. 1017-1022, 2012.

Z. Jakšić, "Optical metamaterials as the platform for a novel generation of ultrasensitive chemical or biological sensors," Metamaterials: Classes, Properties and Applications, E. J. Tremblay, ed., pp. 1-42, Hauppauge, New York: Nova Science Publishers, 2010.

S. M. Vuković, Z. Jakšić, and J. Matovic, “Plasmon modes on laminated nanomembrane-based waveguides,” J. Nanophotonics, vol. 4, pp. 041770, 2010.

S. M. Vuković, Z. Jakšić, I. V. Shadrivov, and Y. S. Kivshar, “Plasmonic crystal waveguides ” Appl. Phys. A, vol. 103, no. 3, pp. 615-617, 2011.

P. Drude, The Theory of Optics, Dover Publications, Mineola, New York, 2005.

H. A. Lorentz, The Theory of Electrons, Dover Publications, Mineola, New York, 1952.

P. W. Milonni, Fast Light, Slow Light and Left-Handed Light, Taylor & Francis, Abingdon, Oxford, 2004.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Materials Today, vol. 16, no. 10, pp. 375-386, 2013.

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C, vol. 112, no. 15, pp. 6027-6032, 2008.

B. L. Twu, and S. E. Schwarz, “Properties of infrared cat-whisker antennas near 10.6 μ,” Appl. Phys. Lett., vol. 26, no. 12, pp. 672-675, 1975.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett., vol. 46, no. 10, pp. 915-917, 1985.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett., vol. 89, no. 9, pp. 093103, 2006.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett., vol. 10, no. 7, pp. 2574-2579, 2010.

T. Trupke, M. Green, and P. Würfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys., vol. 92, no. 7, pp. 4117-4122, 2002.

G. Shvets, and Y. A. Urzhumov, “Electric and magnetic properties of sub-wavelength plasmonic crystals,” J. Opt. A-Pure Appl. Opt., vol. 7, no. 2, pp. S23-S31, 2005.

C. Bauer, and H. Giessen, “Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures,” Opt. Express, vol. 21, no. 103, pp. A363-A371, 2013.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Reports on Progress in Physics, vol. 75, no. 2, pp. 024402, 2012.

M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond, Wiley-VCH, Weinheim, Germany, 2011.

M. Schmid, R. Klenk, M. C. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology, vol. 22, no. 2, 2010.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mat., vol. 22, no. 43, pp. 4794-4808, 2010.

T. K. Sau, and A. L. Rogach, eds., “Complex-shaped Metal Nanoparticles: Bottom-Up Syntheses and Applications,” Weinheim, Germany: Wiley-VCH, 2012.

D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test, SPIE Publications, Bellingham, Washington, 2003.

P. Spinelli, E. Ferry, J. Van De Groep, M. Van Lare, A. Verschuuren, I. Schropp, A. Atwater, A. Polman, V. E. Ferry, M. A. Verschuuren, R. E. I. Schropp, and H. A. Atwater, “Plasmonic light trapping in thin-film Si solar cells,” Journal of Optics, vol. 14, no. 2, 2012.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon., vol. 1, no. 3, pp. 484-588, 2009.

R. D. R. Bhat, N. C. Panoiu, S. R. J. Brueck, and R. M. Osgood Jr, “Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating,” Opt. Express, vol. 16, no. 7, pp. 4588-4596, 2008.

A. Alù, G. D'Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: Broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett., vol. 106, no. 12, 2011.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nature Communications, vol. 3, 2012.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B, vol. 61, no. 15, pp. 10484-10503, 2000.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B, vol. 63, no. 12, pp. 1254171-12541715, 2001.

I. I. Smolyaninov, W. Atia, and C. C. Davis, “Near-field optical microscopy of two-dimensional photonic and plasmonic crystals,” Phys. Rev. B, vol. 59, no. 3, pp. 2454-2460, 1999.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory, vol. 47, no. 11, pp. 2075-2084, 1999.

R. H. Fan, L. H. Zhu, R. W. Peng, X. R. Huang, D. X. Qi, X. P. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B, vol. 87, no. 19, 2013.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, no. 6668, pp. 667-669, 1998.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science, vol. 305, no. 5685, pp. 847-848, 2004.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett., vol. 95, no. 16, 2009.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater., vol. 9, no. 5, pp. 387-396, 2010.

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E, vol. 71, no. 3, pp. 036609, 2005.

M. Dalarsson, M. Norgren, N. Dončov, and Z. Jakšić, “Lossy gradient index transmission optics with arbitrary periodic permittivity and permeability and constant impedance throughout the structure,” Journal of Optics (United Kingdom), vol. 14, no. 6, pp. 065102, 2012.

A. Alù, and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E, vol. 72, no. 1, pp. 016623, 2005.

A. I. Fernández-Domínguez, S. A. Maier, and J. B. Pendry, “Collection and concentration of light by touching spheres: A transformation optics approach,” Phys. Rev. Lett., vol. 105, no. 26, 2010.

J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett., vol. 34, no. 5, pp. 644-646, 2009.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett., vol. 100, no. 20, 2008.

E. E. Narimanov, and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett., vol. 95, no. 4, 2009.

T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: Enhancement of scattering with complementary media,” Opt. Express, vol. 16, no. 22, pp. 18545-18550, 2008.

L. Novotny, and N. Van Hulst, “Antennas for light,” Nat. Photonics, vol. 5, no. 2, pp. 83-90, 2011.

A. Alu, and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE T. Antenn. Propag., vol. 61, no. 4, pp. 1508-1517, 2013.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Phot., vol. 1, no. 3, pp. 438-483, 2009.

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett., vol. 9, no. 12, pp. 4228-4233, 2009.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett., vol. 94, no. 1, 2005.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett., vol. 11, no. 3, pp. 1009-1013, 2011.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B, vol. 76, no. 24, 2007.

E. N. Grossman, J. E. Sauvageau, and D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett., vol. 59, no. 25, pp. 3225-3227, 1991.

G. Volpe, G. Volpe, and R. Quidant, “Fractal plasmonics: Subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet,” Opt. Express, vol. 19, no. 4, pp. 3612-3618, 2011.

Y. Alaverdyan, B. Seplveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nature Physics, vol. 3, no. 12, pp. 884-889, 2007.

C. Simovski, D. Morits, P. Voroshilov, M. Guzhva, P. Belov, and Y. Kivshar, “Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells,” Opt. Express, vol. 21, no. 13, pp. A714-A725, 2013.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science, vol. 332, no. 6030, pp. 702-704, 2011.

Z. Jakšić, M. Milinović, and D. Randjelović, “Nanotechnological enhancement of infrared detectors by plasmon resonance in transparent conductive oxide nanoparticles,” Strojniski Vestnik/Journal of Mechanical Engineering, vol. 58, no. 6, pp. 367-375, 2012.

L. Dominici, F. Michelotti, T. M. Brown, A. Reale, and A. Di Carlo, “Plasmon polaritons in the near infrared on fluorine doped tin oxide films,” Opt. Express, vol. 17, no. 12, pp. 10155-10167, 2009.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J. P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett., vol. 34, no. 18, pp. 2867-2869, 2009.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys., vol. 103, no. 9, 2008.


  • There are currently no refbacks.

ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626