SPECTRAL PARAMETERS FOR FINGER TAPPING QUATIFICATION

Vladislava Bobić, Milica Djurić-Jovičić, Nathanael Jarrasse, Milica Ječmenica-Lukić, Igor Petrović, Saša Radovanović, Nataša Dragašević, Vladimir Kostić

DOI Number
10.2298/FUEE1704585B
First page
585
Last page
597

Abstract


A miniature inertial sensor placed on fingertip of index finger while performing finger tapping test can be used for an objective quantification of finger tapping motion. Temporal and spatial parameters such as cadence, tapping duration, and tapping angle can be extracted for detailed analysis. However, the mentioned parameters, although intuitive and simple to interpret, do not always provide all the necessary information regarding the subject’s motor performance. Analysis of frequency content of the finger tapping movement can provide crucial information about the patient's condition. In this paper, we present parameters extracted from spectral analysis that we found to be significant for finger tapping assessment. With these parameters, tapping’s intra-variability, movement smoothness and anomalies that may occur within the tapping performance can be detected and described, providing significant information for further diagnostics and monitoring progress of the disease or response to therapy.


Keywords

frequency analysis, finger tapping, Parkinson's disease

Full Text:

PDF

References


V.N. Bobić, M. D. Djurić- Jovičić, N. Jarrasse, M. Ječmenica-Lukić, I. N. Petrović, S. M. Radovanović, N. Dragašević and V. S. Kostić, “Frequency analysis of repetitive finger tapping – extracting parameters for movement quantification”, In Proceedings of the 3rd International Conference on Electrical, Electronic and Computing Engineering (IcETRAN 2016), Zlatibor, Serbia, June 13 – 16, 2016, pp. MEI2.2 1-5

C. Duval, "Rest and postural tremors in patients with Parkinson's disease", Brain research bulletin, vol. 70, no. 1, pp. 44-48, 2006.

H. C. Powell, M. A. Hanson and L. John, "On-body inertial sensing and signal processing for clinical assessment of tremor", Biomedical Circuits and Systems, IEEE Transactions on, vol. 3, no. 2, pp. 108-116, 2009.

E. Rocon, J. L. Pons, A. O. Andrade and S. J. Nasuto, "Application of EMD as a novel technique for the study of tremor time series", In Proceedinigs IEEE Eng Med Biol Soc Conf, 2006, pp. 6533-6536.

A. Weiss, S. Sharifi, M. Plotnik, J. P. van Vugt, N. Giladi and J. M. Hausdorff, "Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer", Neurorehabilitation and neural repair, vol. 25, no. 9, pp. 810-818, 2011.

M. Sekine, M. Akay, T. Tamura, Y. Higashi and T. Fujimoto, "Fractal dynamics of body motion in patients with Parkinson's disease", Journal of Neural Engineering, vol. 1, no. 1, pp. 8, 2008.

S. T. Moore, H. G. MacDougall, and W. G. Ondo, “Ambulatory monitoring of freezing of gait in Parkinson’s disease,” J. Neurosci. Methods, vol. 167, no. 2, pp. 340–348, 2008.

I. Shimoyama, T. Ninchoji and K. Uemura, "The Finger-Tapping Test: A Quantitative Analysis", Arch Neurol, vol. 47, no. 6, pp. 681-684, 1990.

G. Strang, "Wavelet transforms versus Fourier transforms", Bulletin of the American Mathematical Society, vol. 18, pp. 288–305, 1993.

T. M. E. Nijsen, P. J. M. Cluitmans, P. A. M. Griep and R. M. Aarts, ”Short Time Fourier and Wavelet Transform for Accelerometric Detection of Myoclonic Seizures”, EMBS Benelux Symposium, pp. 155-158, December 7-8, 2006.

A. Napieralski, Z. Ciota, M. Janicki, M. Kamiński, R. Kotas, P. Marciniak, A. Mielczarek, M. Napieralska, R. Ritter, B. Sakowicz, W. Tylman and M. Zubert, “Examples of medical software and hardware expert systems for dysfunction analysis and treatment”, Facta Universitatis, Series: Electronics and Energetics, vol. 28, no. 1, pp. 29-50, 2014.

M. A. Hanson and L. John, "Assessing Joint Time-Frequency Methods in the Detection of Dysfunctional Movement", In Proceedings of the Fortieth Asilomar Conference on Signals, Systems and Computers, 2006. ACSSC'06, 2006.

B. Xu, A. Song and J. Wu. "Algorithm of imagined left-right hand movement classification based on wavelet transform and AR parameter model", In Proceedings of the 1st Int. Conf. on Bioinformatics and Biomedical Engineering, ICBBE 2007, 6-8 July 2007, pp. 539-542.

M. D. Djuric-Jovicic, V. N. Bobic, M. Jecmenica-Lukic, I. N. Petrovic, S. M. Radovanovic, N. S. Jovicic, V. S. Kostic and M. B. Popovic, "Implementation of continuous wavelet transformation in repetitive finger tapping analysis for patients with PD", In Proc of the 22nd Telecommunications Forum Telfor 2014, IEEE, 2014, pp. 541-544.

J. Jankovic and J. D. Frost, "Quantitative assessment of parkinsonian and essential tremor Clinical application of triaxial accelerometry", Neurology, vol. 31, no. 10, pp. 1235-1235, 1981.

S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami and E. Burdet, "On the analysis of movement smoothness", Journal of neuroengineering and rehabilitation, vol. 12, no. 1, pp.1, 2015.

S. Fahn and R. L. Elton, “Unified Parkinsons Disease Rating Scale”, in: S. Fahn, C. D. Marsden, M. Goldstein and D. B. Calne, Recent developments in Parkinsons disease II, Committee mot UD, New York: MacMillan, pp. 153-63, 1987.

Á. Jobbágy, P. Harcos, R. Karoly and G. Fazekas, "Analysis of finger-tapping movement", Journal of Neuroscience Methods, vol. 141, pp. 29–39, 2005.

M. Djurić-Jovičić, I. Petrović, M. Ječmenica-Lukić, S. Radovanović, N. Dragašević-Mišković, M. Belić, V. Miler-Jerković, M. B. Popović and V. S. Kostić, “Finger tapping analysis in patients with Parkinson’s disease and atypical parkinsonism”, Journal of Clinical Neuroscience, vol. 30, pp. 49-55, 2016.

S. R. Muir, R. D. Jones, J. H. Andreae and I. M. Donaldson, "Measurement and Analysis of Single and Multiple Finger Tapping in Normal and Parkinsonian Subjects", Parkinsonism & Related Disorders, Elsevier Science Ltd, Great Britain, vol. 1, no. 2, pp. 89-96, 1995.

N. S. Jovičić, L. V. Saranovac and D. B. Popović, "Wireless distributed functional electrical stimulation system", Journal of neuroengineering and rehabilitation, vol. 9, no. 1, pp. 1-10, 2012.

S. Balasubramanian, A. Melendez-Calderon and E. Burdet, “A robust and sensitive metric for quantifying movement smoothness”, IEEE transactions on biomedical engineering, vol. 59, no.8, pp. 2126-2136, 2012.

V. Crocher, J. Fong, M. Klaic, D. Oetomo and Y. Tan, “A tool to address movement quality outcomes of post-stroke patients”, In Replace, Repair, Restore, Relieve–Bridging Clinical and Engineering Solutions in Neurorehabilitation. Springer International Publishing, 2014, pp. 329-339.

S. Estrada, M. K. O'Malley, C. Duran, D. Schulz and J. Bismuth, “On the development of objective metrics for surgical skills evaluation based on tool motion”, In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 2014, pp. 3144-3149.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670