Dejan Popović

DOI Number
First page
Last page


An injury or disease of the central nervous system (CNS) results in significant limitations in the communication with the environment (e.g., mobility, reaching and grasping). Functional electrical stimulation (FES) externally activates the muscles; thus, can restore several motor functions and reduce other health related problems. This review discusses the major bottleneck in current FES which prevents the wider use and better outcome of the treatment. We present a control method that we continually enhance during more than 30 years in the research and development of assistive systems. The presented control has a multi-level structure where upper levels use finite state control and the lower level implements model based control. We also discuss possible communication channels between the user and the controller of the FES. The artificial controller can be seen as the replica of the biological control. The principle of replication is used to minimize the problems which come from the interplay of biological and artificial control in FES. The biological control relies on an extensive network of neurons sending the output signals to the muscles. The network is being trained though many the trial and error processes in the early childhood, but staying open to changes throughout the life to satisfy the particular needs. The network considers the nonlinear and time variable properties of the motor system and provides adaptation in time and space. The presented artificial control method implements the same strategy but relies on machine classification, heuristics, and simulation of model-based control. The motivation for writing this review comes from the fact that many control algorithms have been presented in the literature by the authors who do not have much experience in rehabilitation engineering and had never tested the operations with patients. Almost all of the FES devices available implement only open-loop, sensory triggered preprogrammed sequences of stimulation. The suggestion is that the improvements in the FES devices need better controllers which consider the overall status of the potential user, various effects that stimulation has on afferent and efferent systems, reflexive responses to the FES and direct responses to the FES by non-stimulated sensory-motor systems, and the greater integration of the biological control.


functional electrical stimulation, neurorehabilitation, optimal control, finite state control

Full Text:



A. L. Benabid, S. Chabardes, J. Mitrofanis, P. Pollak P. “Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease”, The Lancet Neurology, vol. 31, no. 8(1), pp. 67-81. 2009.

J. H. Burridge, M. Haugland, B. Larsen, R. M. Pickering, N. Svaneborg, H. K. Iversen, P. B. Christensen, J. Haase, J. Brennum and T. Sinkjær, "Phase II trial to evaluate the ActiGait implanted drop-foot stimulator in established hemiplegia", J. Rehabil. Med., vol. 39, pp. 212-218, 2007.

D. G. Everaert, R. B. Stein, G. M. Abrams, A. W. Dromerick, G. E. Francisco, B. J. Hafner, T. N. Huskey, M. C. Munin, K. J. Nolan and C. V. Kufta, "Effect of a foot-drop stimulator and ankle-foot orthosis on walking performance after stroke: a multicenter randomized controlled trial", Neurorehabil Neural Repair, vol. 27, no. 7, pp. 579-591. 2013.

L. E. Fisher, M. E., Miller, S. N. Bailey, H. A. Jr. Davis, J. S. Anderson, L. R. Murray, D. T. Tyler and R. J. Triolo, "Standing after Spinal Cord Injury with Four-contact Nerve-Cuff Electrodes for Quadriceps Stimulation", IEEE Trans. Neural. Syst. Rehabil. Eng., vol.16, pp. 473–478, 2008.

T. Keller, M. R. Popović, I. P. I. Papas, P-Y. Muller, “Transcutaneous Functional Electrical Stimulator -Compex Motion”, Artif. Organs, vol. 26, no. 3, pp. 219-223, 2002.

K. L. Kilgore, H. E. Hoyen, A. M. Bryden, R. L. Hart, M. W. Keith and P. H. Peckham, "An Implanted Upper-Extremity Neuroprosthesis Using Myoelectric Control", J. Hand Surgery, vol. 33, pp. 539-550, 2008.

R. Kobetič, C. S. To, J.R. Schnellenberger, M. L. Audu, T. C. Bulea, R. Gaudio, G. Pinault, S. Tashman and R. J. Triolo, "Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury", J. Rehab. Res. Develop., vol. 46, pp. 447–462, 2009.

A. Kralj, T. Bajd, “Functional Electrical Stimulation: Standing and Walking after Spinal Cord Injury”, Boca Raton, Florida, CRC Press, 1989.

G. E. Loeb, R. A. Peck, W. H. Moore and K. Hood, “BION system for distributed neural prosthetic interfaces”, Med Eng Phys, vol. 23, pp. 9-18, 2001.

N. M. Malešević, L. Popović-Maneski, V. Ilić, N. Jorgovanović, G. Bijelić, T. Keller and D. B. Popović, “A Multi-Pad Electrode based Functional Electrical Stimulation System for Restoration of Grasp”, J. Neuro Eng. Rehabil., vol. 9, no. 66, 2012.

S. Mangold, T. Keller, A. Curt and V. Dietz, “Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury”, Spinal Cord, vol. 43, no. 1, pp. 1-3, 2005.

P. H. Peckham and J. S. Knutson, "Functional electrical stimulation for neuromuscular applications", Annual Review of Biomed. Eng., vol. 7, pp. 327-360, 2005.

D. B. Popović, M. B. Popović, T. Sinkjær, A. Stefanović and L. Schwirtlich, "Therapy of Paretic Arm in Hemiplegic Subjects Augmented with a Neural Prosthesis: A Cross-over study", Can. J. Physio. Pharmacol., vol. 82, pp. 749-756, 2004.

D. B. Popović, T. Sinkjær and M. B. Popović MB. “Electrical stimulation as a means for achieving recovery of function in stroke patients”, J. NeuroRehab., vol. 25, pp. 45–58, 2009.

D. B. Popović, “Advances in functional electrical stimulation (FES)”. Journal of Electromyography and Kinesiology. vol. 24, no. 6, pp. 795-802, 2014.

A. Prochazka, M. Gauthier, M. Wieler and Z. Kenwell, Z. "The bionic glove: An electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia", Arch. Phys. Med. Rehabil., vol. 78, no. 6, pp. 608–14, 1997.

R. van den Brand, J. Heutschi, Q. Barraud, J. DiGiovanna, K. Bartholdi, M. Huerlimann, L. Friedli, I. Vollenweider, E. M. Moraud, S. Duis, N. Dominici, S. Micera, P. Musienko and G. Courtine, "Restoring Voluntary Control of Locomotion after Paralyzing Spinal Cord Injury", Science, vol. 336 no. 6085, pp. 1182-1185, 2012.

V. Visser-Vandewalle, Z. Temel, Ch. van der Linden, L. Ackermans and E. Beuls, "Deep brain stimulation in movement disorders: The applications reconsidered", Acta Neurologica Belgica, vol. 104, pp. 33-36, 2004. NESS_L300_for_Foot_Drop.php [Accessed, Dec. 2016] NESS_H200_for_Hand_Rehab.php [Accessed, Dec. 2016] Pages/default.aspx [Accessed, Dec. 2016] products/microstim-2v2-kit [Accessed, Dec. 2016] [Accessed, Dec. 2016] xchg/ob_com_en/hs.xsl/4762.html [Accessed, 2016] [Accessed, Dec. 2016]

G. Rizzolatti and G. Luppino, "The cortical motor system", Neuron, vol. 31, no. 6, pp. 889-901, 2001.

M. Jeannerod, The neural and behavioural organization of goal-directed movements, Clarendon Press/Oxford University Press, 1988.

N. Bernstein, The Co-ordination and Regulation of Movements, Pergamon Press, Oxford (1967)

M. L. Latash, Control of human movement, Human Kinetics, 1993.

D. B. Popović and T. Sinkjær, Control of Movement for the Physically Disabled, London: Springer, 2000.

D. B. Popović, “Control of walking in disabled humans”, Journal of Automatic control, vol. 13(suppl.), pp. 1-38, 2003.

R. Grasso, Y. P. Ivanenko M. Zago, M. Molinari, G. Scivoletto V. Castellano, V, Macellari and F. Lacquaniti,”Distributed plasticity of locomotor pattern generators in spinal cord injured patients”, Brain, vol. 127, no. 5, pp. 1019-10034, 2004.

Y. P. Ivanenko, R. P. Poppele and F. Lacquaniti F, “Five basic muscle activation patterns account for muscle activity during human locomotion”, The Journal of Physiology, vol. 556, pp. 267-282, 2004.

A. Scheiner, J. T. Mortimer and U. Roessmann, “Imbalanced biphasic electrical stimulation: muscle tissue damage”, Annals of Biomed. Eng., vol. 1, no. 18(4), pp. 407-25, 1990.

J. T. Mortimer, “Motor prostheses”, In Handbook of Physiology: The Nervous System, Motor Control. published on line 2011.

T. J. Bajzek and R. J. Jaeger, “Characterization and control of muscle response to electrical stimulation”, Ann. Biomed. Eng., vol. 15, pp. 485–501, 1987.

R. Baratta and M. Solomonow, “The dynamic response model of nine different skeletal muscles”, IEEE Trans. Biomed. Eng., vol. 37, pp. 243–51, 1990.

P. E. Crago, P. H. Peckham and J. T. Mortimer, ”The choice of pulse duration for chronic electrical stimulation via surface, nerve and intramuscular electrodes”, Ann. Biomed. Eng., vol. 2, pp. 252–264, 1974.

P. E. Crago, P. H. Peckham and G. B. Thrope, “Modulation of muscle force by recruitment during intramuscular stimulation”, IEEE Trans. Biomed. Eng,, vol. 27, pp. 679–684, 1980.

J. A. Gruner and C. P. Mason, "Nonlinear muscle recruitment during intramuscular and nerve stimulation." J Rehabil. Res. Develop., vol. 26, no. 2, pp. 1-16, 1988.

D. B. Popovic, T. Gordon, V. F, Rafuse and A. Prochazka, “Properties of implanted electrodes for functional electrical stimulation”, Annals of Biomed. Eng., vol. 19, no. 3, pp. 303-316, 1991

D. B. Popović and M. B. Popović, “Automatic determination of the optimal shape of the surface electrode: Selective stimulation”, J. Neurosci. Methods, vol. 178, pp. 174-181, 2009.

L. Popović-Maneski, M. Kostić, T. Keller, S. Mitrović, Lj. Konstantinović and D. B. Popović, “Multi-pad electrode for effective grasping: Design”, IEEE Trans. Neur. Sys. Rehabil. Eng., vol. 21, pp. 648-654, 2013.

L. Popović-Maneski, N, Malešević, A. Savić and D. B. Popović, “Spatially distributed asynchronous stimulation delays muscle fatigue”, Muscle & Nerve, vol. 48, pp. 930-937, 2013.

T. Sinkjær, M. Haugland, A. Inmann, M. Hansen and D. K. Nielsen, “Biopotentials as command and feedback signals in functional electrical stimulation systems”, Medical Engineering & Physics, vol. 25, no. 1, pp. 29-40, 2003.

N. Birbaumer, A. R. Murguialday and L. G. Cohen, “Brain-computer-interface (BCI) in paralysis”, The European Image of God and Man, pp. 483-492, Lippincott Williams & Wilkins, 2010.

J.J. Daly, R. Cheng, J. Rogers, K. Litinas, K. Hrovat and M. Dohring, “Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke”, Journal of Neurologic Physical Therapy, vol. 33, no. 4, pp. 203-11, 2009.

A. H. Do, P. T. Wang, C. E. King, A. Abiri, Z. Nenadic, “Brain-computer interface controlled functional electrical stimulation system for ankle movement”, Journal of Neuroengineering and Rehabilitation, vol. 8, no. 49. 2011.

J. D. Millán, R. Rupp, G. R. Müller-Putz, R. Murray-Smith, C. Giugliemma, M. Tangermann, C. Vidaurre, F. Cincotti, A. Kübler, R. Leeb and C. Neuper, “Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges”, Frontiers in Neuroscience, vol. 4, 161, 2010.

C. T. Moritz, S. I. Perlmutter, E. E. Fetz, ”Direct control of paralysed muscles by cortical neurons”, Nature, vol. 456 (7222), pp. 639-642, 2008.

G. Pfurtscheller, G. R. Müller-Putz, J. Pfurtscheller and R. Rupp, “EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient”, EURASIP Journal on Applied Signal Processing, p. 3152-5, 2005.

G. Pfurtscheller G. R. Müller, J. Pfurtscheller, H. J. Gerner and R. Rupp. ”Thought–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia”, Neuroscience Letters. vol. 351, no. 1, pp. 33-36. 2003.

C. Ethier, E. R. Oby, M. J. Bauman and L. E. Miller, "Restoration of grasp following paralysis through brain-controlled stimulation of muscles" Nature, vol. 485, pp. 368–371, 2012.

A. M. Savić, N. M. Malešević and M. B. Popović, “Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy”, Hindawi Publ Corp, Scientific World Journal, Article ID 797128, 2014.

A. B. Schwartz, T. Cui T, D. J. Weber and D. W. Moran, “Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics”, Neuron, vol. 52, no. 1, pp. 205–220, 2006.

M. Taylor, S. I. Helms Tillery and A. B. Schwartz, "Direct Cortical Control of 3D Neuroprosthetic Devices", Science, vol. 296 (5574), pp. 1829-1832, 2002.

J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P.H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson and T. M. Vaughan, “Brain-computer interface technology: a review of the first international meeting”, IEEE Trans. Rehabil. Eng., vol. 8, no. 2, pp. 164-173, 2000.

S. Došen and D. B. Popović, “Transradial prosthesis: artificial vision for control of prehension”, Artificial organs, vol. 35, no. 1, pp. 37-48, 2011.

S. Došen, C. Cipriani, M. Kostić, M. C. Carrozza and D. B. Popović, “Cognitive vision system for the control of a dexterous prosthetic hand: An evaluation study”, Journal of NeuroEngineering and Rehabilitation, on line 7:42, 2010

M. Marković. S. Došen, C. Cipriani, D. B. Popović and D. Farina, “Stereovision and augmented reality for closed-loop control of grasping in hand prostheses”, J. Neural Engineering, vol. 11, no. 4, p. 046001, 2014.

R. Tomović, D. B. Popović and R. B. Stein, Nonanalytical Methods for Motor Control, World Sci Publ, Singapore, 1995.

J. Kojović, M. Djurić-Jovičić, S. Došen, M. B. Popović and D. B. Popović, “Sensor-Driven Four-Channel Stimulation of Paretic Leg: Functional Electrical Walking Therapy”, J. Neurosci.. Methods, vol. 181, pp. 101-105, 2009.

D. B. Popović and M. B. Popović, "Tuning of a Nonanalytic Hierarchical Control System for Reaching with FES", IEEE Trans. on Biomed. Eng., vol. 45, pp. 203-212, 1998.

M. B. Popović and D. B. Popović, "Cloning Biological Synergies Improved Control of Elbow Neuroprostheses", IEEE EMB Magazine, vol. 20, no. 1, pp. 74-81, 2001.

M. B. Popović, “Control of neural prostheses for grasping and reaching”, Med. Eng. Phys., vol. 25, no. 1, pp. 41-50, 2003.

D. B. Popović, R. Tomović, D. Tepavac and L. Schwirtlich, “Control aspects of active above-knee prosthesis”, Intern. J Man-machine Studies, vol. 35, no. 6, pp. 751-767, 2001.

D. B. Popović, R. B. Stein, M. N. Oguztoreli, M. Lebiedowska and S. Jonić. “Optimal control of walking with functional electrical stimulation: a computer simulation study”, IEEE Trans. Rehabil. Eng., vol. 7, no. 1, pp. 69-79, 1999.

S. Jonić, T. Janković, V. Gajić and D. B. Popović, “Three machine learning techniques for automatic determination of rules to control locomotion”, IEEE Trans. Biomed. Eng., vol 46, no. 3, p. 10, 1999.

G. Shue, P. E. Crago and H. J Chizeck, "Muscle-joint models incorporating activation dynamics, moment-angle, and moment-velocity properties" IEEE Trans. Biomed. Eng., vol.42, pp. 212-223, 1992.

R. B. Stein, E. P. Zehr, M. K. Lebiedowska, D. B. Popović, A. Scheiner and H. J. Chizeck, "Estimating mechanical parameters of leg segments in individuals with and without physical disabilities" IEEE Trans Rehabil. Eng., vol. 4, pp. 201-211, 1996.

R. Riener and T. Fuhr, “Patient-driven control of FES-supported standing up: a simulation study”, IEEE Trans. Rehabil.Eng., vol. 6, no. 2, pp. 113-124, 1998.

M. Ferrarin, F. Palazzo, R. Riener and J. Quintern, “Model-based control of FES-induced single joint movements”, IEEE Trans. Neural Syst. Rehabi. Eng., vol. 9, no. 3, pp. 245-257, 2001.

Z. Matjacic, K. Hunt, H. Gollee and T. Sinkjaer, “Control of posture with FES systems”, Med. Eng. Phys., vol. 25, no. 1, pp. 51-62, 2003.

D. B. Popović, M. Radulović, L. Schwirtlich and N. Jauković, "Automatic vs. hand-controlled walking of paraplegics", Med, Eng, Phys., vol. 25, pp. 63-74, 2003.

S. Jezernik, R,G. Wassink and T. Keller, “Sliding mode closed-loop control of FES controlling the shank movement”, IEEE Trans. Biomed. Eng., vol. 51, no. 2, pp. 163-172, 2004.

D. Graupe, “EMG pattern analysis for patient-responsive control of FES in paraplegics for walker-supported walking”, IEEE Trans.Biomed. Eng., vol. 36, no. 7, pp. 711-919, 1989.

C. T Freeman, A. M. Hughes, J. H. Burridge, P. H. Chappell, P. L. Lewin ans E. Rogers, “Iterative learning control of FES applied to the upper extremity for rehabilitation”, Control Engineering Practice, vol. 17, no. 3, pp. 368-381, 2009.


  • There are currently no refbacks.

ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626