CONSIDERATION OF CONDUCTION MECHANISMS IN HIGH-K DIELECTRIC STACKS AS A TOOL TO STUDY ELECTRICALLY ACTIVE DEFECTS

Albena Paskaleva, Dencho Spassov, Danijel Dankovic

DOI Number
10.2298/FUEE1704511P
First page
511
Last page
548

Abstract


In this paper conduction mechanisms which could govern the electron transport through high-k dielectrics are summarized. The influence of various factors – the type of high-k dielectric and its thickness; the doping with a certain element; the type of metal electrode as well as the measurement conditions (bias, polarity and temperature), on the leakage currents and dominant conduction mechanisms have been considered. Practical hints how to consider different conduction mechanisms and to differentiate between them are given. The paper presents an approach to assess important trap parameters from investigation of dominant conduction mechanisms.

Keywords

high-k dielectrics; conduction mechanisms; electrically active defects

Full Text:

PDF

References


S.H. Lo, D. A. Buchanan, Y. Taur and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's”, IEEE Electron Device Lett., vol. 18, pp. 209-211, 1997.

J. G. Simmons, “Richardson-Schottky effect in solids,” Phys. Rev. Lett., vol. 15, pp. 967-968, 1965.

K. F. Schuegraf and C. Hu, "Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation", IEEE Trans. on Electron Devices, vol. 41, no. 5, pp. 761-767, 1994.

N.F. Mott and W.D. Twose, “The theory of impurity conduction”, J. Appl. Phys., vol. 10, pp. 107-163, 1961.

A.I. Chou, K. Lai, K. Kumar, P. Chowdhury and J.C. Lee, “Modeling of stress-induced leakage current in ultrathin oxides with the trap-assisted tunneling mechanism”, Appl. Phys. Lett., vol. 70, pp. 3407- 3409, 1997.

S. Fleisher. P.T. Lai and Y.C. Cheng, “Simplified closed-form trap-assisted tunneling model applied to nitrided oxide dielectric capacitors”, J. Appl. Phys., vol. 75, pp. 5711-5715, 1992.

M.P. Houng and Y.H. Wang, “Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model”, J. Appl. Phys., vol. 86, pp. 1488-1452, 1999.

A. Cuadras, B. Garido, J.R. Morante and L. Fonseca, “Leakage currents and dielectric breakdown of Si1−x−yGexCy thermal oxides”, Microelectron. Reliab. vol. 48, pp. 1635–1640, 2008.

M. Houssa, M. Tuominen, M.Naili, V. Afanas'ev, A. Stesmans, S.Haukka and M.M. Heyns, “Trap-assisted tunneling in high permittivity gate dielectric stacks”, J. Appl. Phys. vol. 87, pp. 8615- 8620, 2000.

D.M. Sathaiya and S. Karmalkar, “Thermionic trap-assisted tunneling model and its application to leakage current in nitrided oxides and AlGaN∕GaN high electron mobility transistors”, J. Appl. Phys. vol. 99, 093701, 2006.

D.M. Sathaiya and S. Karmalkar, “A closed-form model for thermionic trap-assisted tunneling”, IEEE Trans. on Electron Devices vol. 55, pp. 557-564, 2008.

J. Frenkel, “On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors”, Phys. Rev., vol. 54, pp. 647-648, 1938.

J. G. Simmons, “Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems”, Phys. Rev., vol. 155, pp. 657-660, 1967.

R. Yeargan and H. L. Taylor, “The Poole‐Frenkel Effect with Compensation Present“, J. Appl. Phys., vol. 39, pp. 5600-5604, 1968.

D. Mark and T. E. Hartman, “On distinguishing between the Schottky and Poole‐Frenkel Effects in Insulators “J. Appl. Phys., vol. 39, pp. 2163-2164, 1968.

W. K. Choi and C. H. Ling, “Analysis of the variation in the field-dependent behavior of thermally oxidized tantalum oxide films”, J. Appl. Phys., vol. 75, pp. 3987- 3990, 1994.

S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1969. p. 812.

R.L. Angle and H.E. Talley, “Electrical and charge storage characteristics of the tantalum oxide–silicon dioxide device”, IEEE Trans. Electron Devices, vol. 25, pp. 1277–1283, 1978.

C. Chaneliere, S. Four, J.L. Autran and R.A.B. Devine, “Comparison between the properties of amorphous and crystalline Ta2O5 thin films deposited on Si”, Microelectron. Reliab., vol. 39, pp. 261-268, 1999.

J.G. Simmons, “Conduction in thin dielectric films”, J. Phys. D: Appl. Phys., vol. 4, pp. 613-657.

F.C. Chiu, “A review on conduction mechanisms in dielectric films”, Advances in Materials Science and Engineering vol. 2014, art. no. 578168 (18p.), 2014.

K.C. Kao, Dielectric phenomena in solids. San Diego. Elsevier Academic Press, 2004, p. 447.

W.R. Harrell and C. Gopalakrishnan, “Implications of advanced modeling on the observation of Poole–Frenkel effect saturation”, Thin Solid Films, vol. 405, pp. 205-217, 2002.

R.G. Southwick, J. Reed, C.Buu, R. Butlera and G. Bersuker, “Limitations of Poole–Frenkel conduction in bilayer HfO2/SiO2MOS Devices”, IEEE Trans. Device and Mater. Reliab., vol. 10, pp. 201-207, 2010.

R. Ongaro and A. Pillonnet, “Poole-Frenkel (PF) effect high field saturation”, Revue Phys. Appl. vol. 24, pp. 1085-1095, 1989.

M. Ieda, G. Sawa and S. Kato, “A Consideration of Poole Frenkel Effect on Electric Conduction in Insulators”, J. Appl. Phys. vol. 42, pp. 3737-3740, 1971.

J.L. Hartke, “The three‐dimensional Poole‐Frenkel Effect“, J. Appl. Phys., vol. 39, pp. 4871-4873, 1968.

R. Ongaro, and A. Pillonnet, “Generalized Poole Frenkel (PF) effect with donors distributed in energy,” Revue Phys. Appl., vol. 24, pp. 1097-1110, 1989.

B. De Salvo, G. Ghibaudo, G. Pananakakis, B. Guillaumot and G. Reimbold, “A general bulk-limited transport analysis of a 10 nm thick oxide stress-induced leakage current”, Solid-State Electron., vol. 44, pp. 895-903, 2000.

A. Pillonnet and R. Orlando, Revue Phys. Appl. vol. 25 pp. 229-242, 1990.

P. Mark and W. Helfrich, “Space charge limited currents in organic crystals”, J. Appl. Phys., vol. 33, pp. 205-215, 1962.

J. S. Bonham, “SCLC theory for a Gaussian trap distribution”, Aust. J. Chem., vol. 26, pp. 927–939, 1978.

A. Rose, “Recombination processes in insulators and semiconductors”, Phys. Rev., vol. 97, pp. 322-333, 1955.

C. Chaneliere, J.L; Autran, R.A.B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications”, Mater. Sci. Eng., vol. 22, pp. 269−322, 1998.

M. Lenzlinger and E. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2”, J. Appl. Phys., vol. 40, pp. 278-283, 1969.

M Lemberger, A Paskaleva, S Zürcher, A.J Bauer, L Frey and H Ryssel, “Electrical characterization and reliability aspects of zirconium silicate films obtained from novel MOCVD precursors”, Microelectron. Eng., vol. 72, pp. 315-320, 2004.

J. Robertson, “Electronic structure and band offsets of high-dielectric-constant gate oxides”, MRS Bull., vol. 27, pp. 217-221, 2002.

S. Kalpat, H.H. Tseng, M. Ramon, M. Moosa, D. Tekleab, Ph.J. Tobin, D.C. Gilmer, R.I. Hegde, C. Capasso, C. Tracy and B.E. White Jr, “BTI characteristics and mechanisms of metal gated HfO2 films with enhanced interface/bulk process treatments” IEEE Trans. Device Mater. Reliab., vol. 5, pp. 26-35, 2005.

M. Aoulaiche, M. Houssa, R. Degraeve, G. Groeseneken, S. De Gendt, and M. M. Heyns, “Polarity dependence of bias temperature instabilities in HfxSi1-xON/TaN gate stacks“, In Proceedings of the 35th European Solid-State Device Research Conference ESSDERC, Grenoble, France, 2005, IEEE, pp. 197–200.

A. Paskaleva, M. Lemberger, A.J. Bauer and L. Frey, “Implication of oxygen vacancies on current conduction mechanisms in TiN/Zr1-x AlxO2/TiN MIM structures”, J. Appl. Phys., vol. 109, art. no. 076101 (3p), 2011.

W. Weinreich,R. Reiche, M. Lemberger, G. Jegert, J. Mueller, L. Wilde, S. Teichert, J. Heitmann, E. Erben, L. Oberbeck, U. Schroeder, A. J. Bauer and H. Ryssel, “Impact of interface variations on J-V and C-V polarity asymmetry of MIM capacitors with amorphous and crystalline Zr(1-x)AlxO2 films” Microelectron. Eng., vol. 86, pp. 1826-1829, 2009.

A. Paskaleva, M. Lemberger, A. J. Bauer, W. Weinreich, J. Heitmann, E. Erben, U. Schröder, and L. Oberbeck, “Influence of the amorphous/crystalline phase of Zr1−x AlxO2 high-k layers on the capacitance performance of metal insulator metal stacks”, J. Appl. Phys., vol. 106, art. no. 054107, 2009.

J. Robertson, K. Xiong, and B. Falabretti, “Point defects in ZrO2 high-κ gate oxide”, IEEE Trans. Device Mater. Reliab. vol. 5, 84-89, 2005.

M. Tapajna, A. Paskaleva, E. Atanassova, E. Dobrocka, K. Husekova and K. Frohlich, “Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures”, Semicond. Sci. Technol., vol. 25, art. no. 075007, 2010.

H. Sawada and K. Kawakami, “Electronic structure of oxygen vacancy in Ta2O5”, J. Appl. Phys., vol. 86, pp. 956-959, 1999.

W. S. Lau, L.L. Leong, T. Han and N.P. Sandler, “Detection of oxygen vacancy defect states in capacitors with ultrathin Ta2O5 films by zero-bias thermally stimulated current spectroscopy”, Appl. Phys. Lett., vol. 83, pp. 2835-2837, 2003.

E. Atanassova, D. Spassov, A. Paskaleva, M. Georgieva and J. Koprinarova, “Electrical characteristics of Ti-doped Ta2O5 stacked capacitors”, Thin Solid Films, vol. 516, pp. 8684-8692, 2008.

D Spassov, E Atanassova, A Paskaleva, N Novkovski and A Skeparovski, “Electrical behaviour of Ti-doped Ta2O5 on N2O- and NH3-nitrided Si”, Semicond. Sci. Technol., vol. 24, art.no 075024 (10pp.), 2009.

A. Paskaleva and E. Atanassova, “Evidence for a conduction through shallow traps in Hf-doped Ta2O5”, Mater. Sci. Semicond. Process., vol. 13, pp. 349-55, 2010.

A Skeparovski1, N Novkovski1, E Atanassova, A Paskaleva and V K Lazarov “Effect of Al gate on the electrical behaviour of Al-doped Ta2O5 stacks”, J. Phys. D: Appl. Phys., vol. 44 art. no. 235103 (10pp), 2011.

D. Spassov, E. Atanassova and A. Paskaleva, “Lightly Al-doped Ta2O5: Electrical properties and mechanisms of conductivity”, Microelectron. Reliab., vol. 51, pp. 2102-2109, 2011.

A. Paskaleva, M. Rommel, A. Hutzler, D. Spassov, and A. J. Bauer, “Tailoring the electrical properties of HfO2 MOS-devices by aluminum doping”, ACS Appl. Mater. Interfaces, vol. 7, pp. 17032-17043, 2015.

W.J. Zhu, T.P. Ma, T. Tamagawa, J. Kim and Y. Di, “Current transport in metal/hafnium oxide/silicon structure”, IEEE Electron Device Lett., vol. 23, pp. 97-99, 2002.

V.V Afanas’ev, A. Stesmans, L. Pantisano, S. Cimino, C. Adelmann, L. Goux, Y.Y Chen, J.A. Kittl, D. Wouters and M. Jurczak, “TiNx/HfO2 interface dipole induced by oxygen scavenging”, Appl. Phys. Lett., vol. 98, art. no. 132901 (3pp.), 2011.

J.L. Gavartin, D. Muñoz Ramo, A.L. Shluger, G. Bersuker and B.H. Lee, “Negative oxygen vacancies in HfO2 as charge traps in high-k stacks”, Appl. Phys. Lett., vol. 89, art. no. 082908 (3pp.), 2006.

C. Mannequin, P. Gonon, C. Vallée, L. Latu-Romain, A. Bsiesy, H. Grampeix, A. Salaün and V. Jousseaume, “Stress-induced leakage current and trap generation in HfO2 thin films”, J. Appl. Phys. vol. 112, art. No. 074103 (9pp.), 2012.

M.A. Lampert and P. Mark, Current injection in solids. New York and London, Academic Press, 1970.

T.J. Park, J.H. Kim, J.H. Jang, C.K. Lee, K.D. Na, S.Y. Lee, H.S. Jung, M. Kim, S. Han and C.S. Hwang, “Reduction of electrical defects in atomic layer deposited HfO2 films by Al doping”, Chem. Mater., vol. 22, pp. 4175-4184, 2010.

G. Molas, M. Bocquet, J.Buckley, H. Grampeix, M. Gély, J.P. Colonna, C. Licitra, N. Rochat, T. Veyront, X. Garros, F. Martin, P. Brianceau, V. Vidal, C. Bongiorno, S. Lombardo, B. De Salvo and S. Deleonibus, “Investigation of hafnium-aluminate alloys in view of integration as interpoly dielectrics of future flash memories”, Solid State Electron., vol. 51, pp. 1540-1546, 2007.

A. Paskaleva, A. J. Bauer, M. Lemberger, and S. Zürcher, “Different current conduction mechanisms through thin high-k HfxTiySizO films due to the varying Hf to Ti ratio”, J. Appl. Phys., vol. 95, pp. 5583-5590, 2004.

A. Paskaleva, A. J. Bauer, and M. Lemberger, “An asymmetry of conduction mechanisms and charge trapping in thin high-k HfxTiySizO films”, J. Appl. Phys., vol. 98, art. no 053707, 2005.

M. Lemberger, A. Paskaleva, S. Zürcher, A. J. Bauer, L. Frey, and H. Ryssel, “Electrical properties of hafnium silicate films obtained from a single-source MOCVD precursor”, Microelectron. Reliab., vol. 45, pp. 819-822, 2005.

D. Muñoz Ramo, A. L. Shluger, and G. Bersuker, “Ab initio study of charge trapping and dielectric properties of Ti-doped HfO2”, Phys. Rev. B, vol. 79, art. no 035306, 2009.

A. Paskaleva, M. Lemberger, E. Atanassova, and A. J. Bauer, "Traps and trapping phenomena and their implementations on electrical behavior of high-k capacitor stack", J. Vac. Sci. Technol., vol. 29, art. no. 01AA03 (10pp), 2011.

G. A. Niklasson and K. Brantervik, “Analysis of current‐voltage characteristics of metal‐insulator composite films”, J. Appl. Phys., vol. 59, pp. 980-982, 1986.

R.M. Fleming, D.V. Lang, C.D.W. Jones, M.L. Steigerwald, D.W. Murphy, G.B. Alers, Y.-H. Wong, R.B. van Dover, J.R. Kwo, and A.M. Sergent, “Defect dominated charge transport in amorphous Ta2O5 thin films”, J. Appl. Phys., vol. 88, pp. 850-862 2000.

D. Spassov, E. Atanassova and D. Virovska, “Electrical characteristics of Ta2O5 based capacitors with different gate electrodes”, Appl. Phys. A, vol. 82, pp. 55-62, 2006.

E. Atanassova, D. Spassov and A. Paskaleva, “Metal gates and gate-deposition-induced defects in Ta2O5 stack capacitors”, Microelectron. Reliab., vol. 47, pp. 2088–2093, 2007.

L. Michalas, M. Koutsoureli, E. Papandreou, A. Gantis, G. Papaioannou, “A MIM capacitor study of dielectric charging for rf mems capacitive switches”, Facta Universitatis, Series: Electronics and Energetics, vol. 28, pp. 113-122, 2015.

N. Novkovski, “Physical modeling of electrical and dielectric properties of high-k Ta2O5 based MOS capacitors on silicon”, Facta Universitatis, Series: Electronics and Energetics, vol. 27, pp. 259-73, 2014.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670