COST-EFFECTIVE SENSORS AND SENSOR NODES FOR MONITORING ENVIRONMENTAL PARAMETERS

Dragana Vasiljević, Čedo Žlebič, Goran Stojanovic, Mitar Simić, Libu Manjakkal, Zoran Stamenković

DOI Number
-
First page
11
Last page
23

Abstract


This paper reviews the design and characterization of humidity and pH sensors manufactured in the printed circuit board (PCB), ink-jet, and screen printing technologies. The first one (PCB technology) provides robust sensors with PET film which can be exposed to harsh environment. The second (ink-jet technology) can manufacture sensors on flexible substrates (foils and papers). The third (screen printing technology) has been used to implement a thick-film sensor. In addition to this, a multi-sensor cloud-based electronic system with autonomous power supply (solar panels) for air and water quality monitoring has been described. Finally, a flexible and modular hardware platform for remote and reliable sensing of environmental parameters has been presented.


Full Text:

PDF

References


H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, and M. S. Dresselhaus, “Ultrahigh humidity sensitivity of graphene oxide”, Scientific Reports, vol. 3-2714, pp. 1-7, 2013.

H. Chi, Y. J. Liu, F. Wang, and C. He, “Highly sensitive and fast response colorimetric humidity sensors based on graphene oxides film”, ACS Appl. Mater. Interfaces, vol. 7, pp. 19882-19886, 2015.

Y. Yao, X. Chen, H. Guo, Z. Wu, and X. Li, “Humidity sensing behaviour of graphene- oxide-silicon bi-layer flexible structure”, Sensors and Actuators B: Chemical, vol. 161, pp. 1053-1058, 2012.

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device”, Carbon, vol. 50, pp. 1667-1673, 2012.

P. G. Su and Z. M. Lu, “Flexibility and electrical and humidity-sensing properties of diamine functionalized graphene oxide films”, Sensors and Actuators B: Chemical, vol. 211, pp. 157-163, 2015.

D. Zhang, J. Tong, and B. Xia, “Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly”, Sensors and Actuators B: Chemical, vol. 197, pp. 66-72, 2014.

R. Gao, D.-F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z.-M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide”, Sensors and Actuators B: Chemical, vol. 222, pp. 618-624, 2016.

D. Zhang, H. Chang, P. Li, R. Liu, and Q. Xue, “Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite”, Sensors and Actuators B: Chemical, vol. 225, pp. 233-240, 2016.

C. L. Zhao, M. Qin, W. H. Li, and Q. A. Huang, “Enhanced performance of a CMOS interdigital capacitive humidity sensor by graphene oxide”, Solid-State Sensors, Actuators, and Microsystems Conference, 2011, (pp. 1954-1957)

J. Kang, M. Wang, and Z. Xiao, “Modeling and control of pH in pulp and paper wastewater treatment process”, Journal Water Resource and Protection, vol. 2, pp. 122-127, 2009.

L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, and R. P. Socha, “Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements”, Sensors and Actuators B: Chemical, vol. 204, pp. 57-67, 2014.

H. A. Clark, R. Kopelman, R. Tjalkens, and M. A. Philbert, “Optical nanosensors for chemical analysis inside single living cells - Sensors for pH and calcium and the intracellular application of PEBBLE sensors”, Anal. Chem., vol. 71, pp. 4837-4843, 1999.

B. D. Malhotra and A. Chaubey, “Biosensors for clinical diagnostics industry”, Sensors and Actuators B: Chemical, vol. 91, pp. 117-127, 2003.

C. Bohnke, H. Duroy, and J. L. Fourquet, “pH sensors with lithium lanthanum titanate sensitive material: applications in food industry”, Sensors and Actuators B: Chemical, vol. 89, pp. 240-247, 2003.

L. Xie, Y. Qin, and H. Y. Chen, “Polymeric optodes based on upconverting nanorods for fluorescent measurements of pH and metal ions in blood samples”, Anal. Chem., vol. 84, pp. 1969-1974, 2012.

V. A. Magnotta, H. Y. Heo, B. J. Dlouhy, N. S. Dahdaleh, R. L. Follmer, D. R. Thedensa, M. J. Welshc, and J. A. Wemmie, “Detecting activity-evoked pH changes in human brain”, Proc. National Academy of Sciences of USA, vol. 109, pp. 8270-8273, 2012.

U. Guth, W. Vonau, and J. Zosel, “Recent developments in electrochemical sensor application and technology — a review”, Meas. Sci. Technol., vol. 20, pp. 1-14, 2009.

Y. Qin, H. J. Kwon, M. M. Howlader, and M. J. Deen, “Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: recent advances and research challenges”, RSC Advances, vol. 5, pp. 69086-69109, 2015.

P. Kurzweil, “Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook”, Sensors, vol. 9, pp. 4955-4985, 2009.

G. Eisenmann, Glass electrodes for hydrogen and other cations, Ed. Marcel Dekker, New York, USA, 1967.

Y. H. Liao and J. C. Chou, “Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method”, Mat. Chem. Phys., vol. 114, pp. 542-548, 2009.

Y. Chen, S. C. Mun, and J. Kim, “A wide range conductometric pH sensor made with titanium-dioxide / multiwall-carbon nanotube/cellulose hybrid nanocomposite”, IEEE Sensors J., vol. 13, pp. 4157-4162, 2013.

R. Igreja and C. J. Dias, “Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness”, Sensors and Actuators B: Chemical, vol. 115, pp. 69-78, 2006.

L. Chia-Yen and L. Gwo-Bin, “Micro-machine based humidity sensors with integrated temperature sensors for signal drift compensation”, Journal of Micromechanics and Microengineering, vol. 13, pp. 620-627, 2003.

F. Molina Lopez, D. Briand, and N. F. de Rooij, “All additive inkjet printed humidity sensors on plastic substrate”, Sensors and Actuators B: Chemical, vol. 166, pp. 212-222, 2012.

M. Simić, L. Manjakkal, K. Zaraska, G. M. Stojanović, and R.Dahiya, “TiO2 based thick film pH sensor”, IEEE Sensors J., vol. 17, pp. 248-255, 2017.

M. Simić, “Complex impedance measurement system for the frequency range from 5 kHz to 100 kHz”, Key Eng. Mater., vol. 644, pp. 133-136, 2015.

M. Simić, “Realization of digital LCR meter”, Proc. EPE, 2014, (pp. 769-773)

M. Simić, “Complex impedance measurement system for environmental sensors characterization”, Proc. 22nd Telecommunications Forum TELFOR, Belgrade (Serbia) 2014, (pp. 660-663)

L. Manjakkal, E. Djurdjic, K. Cvejin, J. Kulawik, K. Zaraska, and D. Szwagierczak, “Electrochemical impedance spectroscopic analysis of RuO2 based metal oxide thick film pH sensors”, Electrochim. Acta., vol. 168, pp. 246-255, 2015.

S. Khan, L. Lorenzelli, and R. Dahiya, “Technologies for printing sensors and electronics over large flexible substrates: A review”, IEEE Sensor. J., vol. 15, pp. 3164-3185, 2015.

K. Arshak, E. Gill, A. Arshak, and O. Korostynska, “Investigation of tin oxides as sensing layers in conductimetric interdigitated pH sensors”, Sensors and Actuators B: Chemical, vol. 127, pp. 42-53, 2007.

M. Simić, G. Stojanović, L. Manjakkal, and K. Zaraska, “Multi-sensor system for remote environmental (air and water) quality monitoring”, Proc. 24th Telecommunications Forum TELFOR, Belgrade (Serbia) 2016, (pp. 1-4)

K. Piotrowski, A. Sojka-Piotrowska, Z. Stamenkovic, and R. Kraemer, “IHPNode platform as a base for precision farming and remote diagnosis in agriculture”, Proc. 24th Telecommunications Forum TELFOR, Belgrade (Serbia) 2016, (pp. 1-5)


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670