Zoran Jakšić, Marko Obradov, Olga Jakšić, Goran Isić, Sloboda Vuković, Dana Vasiljević Radović

DOI Number
First page
Last page


In this work we review methods to decrease the optical absorption losses in metamaterials. The practical interest for metamaterials is huge, but the possible applications are severely limited by their high inherent optical absorption in the metal parts. We consider the possibilities to fabricate metamaterial with a decreased metal volume fraction, the application of alternative lower-loss plasmonic materials instead of the customary utilized noble metals, the use of all-dielectric, high refractive index contrast subwavelength nanocomposites. Finally, we dedicate our attention to various methods to optimize the frequency dispersion in metamaterials by changing their geometry and composition in order to reach lower absorption, which includes the use of the hypercrystals. The final goal is to widen the range of different metamaterial-based devices and structures, including those belonging to transformation optics. Maybe the most important among them is the fabrication of a novel generation of all-optical or hybrid optical/electronic integrated circuits that would operate at optical frequencies and at the same time would offer a packaging density and complexity of the contemporary integrated circuits, owing to the strong localization of electromagnetic fields enabled by plasmonics.


Metamaterials, Transformation Optics, Plasmonics, Low-Loss Metamaterials, Hyperbolic metamaterials

Full Text:



U. Leonhardt, “Optical Conformal Mapping,” Science, vol. 312, no. 5781, pp. 1777-1780, 2006.

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett., vol. 10, no. 6, pp. 1991-1997, 2010.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science, vol. 312, no. 5781, pp. 1780-1782, 2006.

W. Cai, and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, Dordrecht , Germany, 2009.

S. A. Ramakrishna, and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, SPIE Press Bellingham, WA & CRC Press, Taylor & Francis Group, Boca Raton FL, 2009.

M. I. Dyakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP, vol. 67, pp. 714-716, 1988.

G. Isić, S. Vuković, Z. Jakšić, and M. Belić, “Tamm plasmon modes on semi-infinite metallodielectric superlattices,” Scientific Reports, vol. 7, no. 1, pp. 3746, 2017.

J. A. Polo Jr, and A. Lakhtakia, “Surface electromagnetic waves: A review,” Laser and Photonics Reviews, vol. 5, no. 2, pp. 234-246, 2011.

J. Yang, M. Huang, C. Yang, Z. Xiao, and J. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express, vol. 17, no. 22, pp. 19656-19661, 2009.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature, vol. 390, no. 6661, pp. 671-673, 1997.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett., vol. 100, no. 20, 2008.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett., vol. 10, no. 7, pp. 2342-2348, 2010.

J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett., vol. 34, no. 5, pp. 644-646, 2009.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534-537, 2005.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett., vol. 7, no. 2, pp. 403-408, 2007.

J. B. Pendry, and D. R. Smith, “The quest for the superlens,” Sci. Am., vol. 295, no. 1, pp. 60-67, 2006.

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express, vol. 14, no. 18, pp. 8247-8256, 2006.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science, vol. 315, no. 5819, pp. 1686, 2007.

E. E. Narimanov, and V. M. Shalaev, “Optics: Beyond diffraction,” Nature, vol. 447, no. 7142, pp. 266-267, 2007.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photonics, vol. 1, no. 4, pp. 224-227, 2007.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science, vol. 328, no. 5976, pp. 337-339, 2010.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science, vol. 311, no. 5758, pp. 189-193, 2006.

S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Science+Business Media, New York, NY, 2007.

J. Brown, “Artificial dielectrics having refractive indices less than unity,” Proc. IEEE, vol. 100, no. 4, pp. 51-62, 1953.

J. Brown, "Artificial dielectrics," Progress in Dielectrics, J. B. Birks, ed., pp. 193–225, Hoboken, New Jersey: Wiley, 1960.

S. M. Vuković, Z. Jakšić, and J. Matovic, “Plasmon modes on laminated nanomembrane-based waveguides,” J. Nanophotonics, vol. 4, pp. 041770, 2010.

Z. Jakšić, and J. Matovic, “Functionalization of Artificial Freestanding Composite Nanomembranes,” Materials, vol. 3, no. 1, pp. 165-200, 2010.

C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, “Freely suspended nanocomposite membranes as highly sensitive sensors,” Nature Mater., vol. 3, no. 10, pp. 721-728, 2004.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon., vol. 1, no. 3, pp. 484-588, 2009.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quant. Electr., vol. 14, no. 6, pp. 1479-1495, 2008.

A. Boltasseva, and H. A. Atwater, “Low-Loss Plasmonic Metamaterials,” Science, vol. 331, no. 6015, pp. 290-291, 2011.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev, pp. 1-13, 2010.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J. P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett., vol. 34, no. 18, pp. 2867-2869, 2009.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature, vol. 487, no. 7405, pp. 82, 2012.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nature Photonics, vol. 6, no. 11, pp. 749, 2012.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nature Mater., vol. 10, no. 5, pp. 361, 2011.

S. Jahani, and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotech., vol. 11, no. 1, pp. 23-36, 2016.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science, vol. 354, no. 6314, 2016.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nature Comm., vol. 3, 2012.

M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond, Wiley-VCH, Weinheim, Germany, 2011.

M. Schmid, R. Klenk, M. C. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology, vol. 22, no. 2, pp. 025204.1-10, 2010.

Z. Jakšić, M. Obradov, S. Vuković, and M. Belić, “Plasmonic enhancement of light trapping in photodetectors,” Facta Universitatis, Series: Electronics and Energetics, vol. 27, no. 2, pp. 183-203, 2014.

A. Epstein, and G. V. Eleftheriades, “Huygens’ metasurfaces via the equivalence principle: design and applications,” JOSA B, vol. 33, no. 2, pp. A31-A50, 2016.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nature Photonics, vol. 7, no. 12, pp. 948-957, 2013.

E. E. Narimanov, “Photonic hypercrystals,” Physical Review X, vol. 4, no. 4, 2014.


  • There are currently no refbacks.

ISSN: 0353-3670