CONSIDERATIONS ON THE IMPORTANCE OF PROPER HEAT TRANSFER COEFFICIENT MODELING IN AIR COOLED ELECTRONIC SYSTEMS

Marcin Janicki, Agnieszka Samson, Tomasz Raszkowski, Tomasz Torzewicz, Andrzej Napieralski

DOI Number
10.2298/FUEE1804519J
First page
519
Last page
528

Abstract


This paper illustrates, based on a practical example of a hybrid circuit, the influence of proper heat transfer coefficient modelling in air cooled electronic systems on the accuracy of thermal simulations. This circuit contains a transistor heat source and a set of temperature sensors. The measurements of their temperature responses are taken in natural convection and forced air cooling conditions. The experimental data provide the information necessary to estimate the local heat transfer coefficient values in heat source and temperature sensor locations. Moreover, the experiments rendered possible the fitting of parameters of an empirical heat transfer coefficient model for different surface temperature rise values and cooling air velocities, and hence allowed significant improvement of thermal simulation accuracy.

Keywords

thermal modeling, air cooling, heat transfer coefficient

Full Text:

PDF

References


R. Ross, ed., Microelectronics Failure Analysis: Desk Reference. EDFAS, ASM International, 2011.

M. Janicki, Z. Sarkany and A. Napieralski, “Impact of Nonlinearities on Electronic Device Transient Thermal Responses”, Microelectron. J., vol. 45, pp. 1721-1725, December 2014.

F.P. Incropera and D.P. De Witt, Fundamentals of Heat and Mass Transfer. Wiley & Sons, 2002.

J.P. Holman, Heat Transfer. McGraw-Hill, 1986.

J.H. Lienhard IV and J.H. Lienhard V, A Heat Transfer Textbook. Phlogiston Press, 2012.

G. Ellison, Thermal Computations for Electronics: Conductive, Radiative, Convective Air Cooling. CRC Press, 2010.

Y. M. Li and A. Ortega, “Forced Convection from A Rectangular Heat Source in Uniform Shear Flow: The Conjugate Peclet Number in The Thin Plate Limit”, In Proceedings of the 6th ITHERM. Seattle, WA: IEEE, 1998, pp. 284-294.

R. Aster, B. Borchers, and C. Thurber, Parameter Estimation and Inverse Problems. Elsevier, 2005.

M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer. Taylor & Francis, 2000.

M. Janicki and S. Kindermann, “Recovering Temperature Dependence of Heat Transfer Coefficient in Electronic Circuits”, Inverse Probl. Sci. En., vol. 17, pp. 1129-1142, October 2009.

D. Karaboga, and B. Akay, “Survey: Algorithms Simulating Bee Swarm Intelligence”, Artif. Intell. Rev., vol. 31, pp. 68-85, June 2009.

D. Teodorovic, P. Lucic, G. Z. Markovic and M. Dell'Orco, “Bee Colony Optimization: Principles and Applications”, In Proceedings of the 8th NEUREL. Belgrade: IEEE, 2006, pp. 151-156.

A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed Optimization by Ant Colonies”, In Proceedings of the ECAL. Paris: Elsevier, 1991, pp. 134-142.

T. Torzewicz, A. Samson, T. Raszkowski, A. Sobczak, M. Janicki, M. Zubert, A. Napieralski, “Thermal Analysis of Hybrid Circuits with Variable Heat Transfer Coefficient”. In Proceedings of the 33rd SEMI-THERM, San Jose, CA, 2017, pp. 19-22.

T. Raszkowski and A. Samson, “Application of Genetic Algorithm and Swarm Intelligence Algorithms to Heat Transfer Coefficient Estimation”, Bulletin de la Société des Sciences et des Lettres de Łódź. Série: Recherches sur les Déformations, vol. LXVII, pp. 103-125, October 2017.

G. A. (W.) Luiten, “Characteristic Length and Cooling Circle”, In Proceedings of the 26th SEMI-THERM. Santa Clara, CA: IEEE, 2010, pp. 7-13.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670