ON FUNDAMENTAL OPERATING PRINCIPLES AND RANGE-DOPPLER ESTIMATION IN MONOLITHIC FREQUENCY-MODULATED CONTINUOUS-WAVE RADAR SENSORS

Vladimir Milovanović

DOI Number
10.2298/FUEE1804547M
First page
547
Last page
570

Abstract


The diverse application areas of emerging monolithic noncontact
radar sensors that are able to measure object’s distance and velocity is expected to grow in the near future to scales that are now nearly inconceivable. A classical concept of frequency-modulated continuous-wave (FMCW) radar, tailored to operate in the millimeter-wave (mm-wave) band, is well-suited to be implemented in the baseline CMOS or BiCMOS process technologies. High volume production could radically cut the cost and decrease the form factor
of such sensing devices thus enabling their omnipresence in virtually every field. This introductory paper explains the key concepts of mm-wave sensing starting from a chirp as an essential signal in linear FMCW radars. It further sketches the fundamental operating principles and block structure of contemporary fully integrated homodyne FMCW radars. Crucial radar parameters like the maximum unambiguously measurable distance and speed, as well as range
and velocity resolutions are specified and derived. The importance of both beat tones in the intermediate frequency (IF) signal and the phase in resolving small spatial perturbations and obtaining the 2-D range-Doppler plot is pointed out. Radar system-level trade-offs and chirp/frame design strategies are explained. Finally, the nonideal and second-order effects are commented and the examples of practical FMCW transmitter and receiver implementations are summarized.

Keywords

FMCW, frequency-modulated continuous-wave, radar, mm-wave, linear chirp, range-Doppler, sensors, radar-on-a-chip (RoC), single-chip radar

Full Text:

PDF

References


J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 845–860,

Mar. 2012.

C. Li, Z. Peng, T. Y. Huang, T. Fan, F. K. Wang, T. S. Horng, J. M. Muñoz-Ferreras, R. Gómez-García, L. Ran, and J. Lin, “A review on recent progress of portable short-range noncontact microwave radar systems,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1692–1706, May 2017.

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1707–1715, May 2017.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag., vol. 4, no. 3, pp. 39–50, Sep. 2003.

T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010.

M. Skolnik, Introduction to Radar Systems, 3rd ed. McGraw-Hill, 2002. [7] S. Trotta, H. Knapp, D. Dibra, K. Aufinger, T. F. Meister, J. Bock, W. Simburger, and A. L. Scholtz, “A 79 GHz SiGe-bipolar spread-spectrum TX for

automotive radar,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 430–613.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and W. V. Thillo, “A 79-GHz 2 2 MIMO PMCW radar SoC in 28-nm CMOS,” IEEE J. Solid-State Circuits, vol. 52, no. 10, pp. 2613–2626, Oct. 2017.

W. V. Thillo, V. Giannini, D. Guermandi, S. Brebels, and A. Bourdoux, “Impact of ADC clipping and quantization on phase-modulated 79 GHz CMOS radar,” in 2014 11th Eur. Radar Conf. (EuRAD), Oct. 2014, pp. 285–288.

J. Lee, Y. A. Li, M. H. Hung, and S. J. Huang, “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746–2756, Dec. 2010.

N. Pohl, T. Jaeschke, and K. Aufinger, “An ultra-wideband 80GHz FMCW radar system using a SiGe bipolar transceiver chip stabilized by a fractional-N PLL synthesizer,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 757–765, Mar. 2012.

T. N. Luo, C. H. E. Wu, and Y. J. E. Chen, “A 77-GHz CMOS FMCW frequency synthesizer with reconfigurable chirps,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2641–2647, Jul. 2013.

W. Wu, R. B. Staszewski, and J. R. Long, “A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65nm CMOS,” IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1081–1096, May 2014.

J. Park, H. Ryu, K. W. Ha, J. G. Kim, and D. Baek, “76-81-GHz CMOS transmitter with a phase-locked-loop-based multichirp modulator for automotive radar,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1399–1408,

Apr. 2015.

G. Hasenaecker, M. van Delden, T. Jaeschke, N. Pohl, K. Aufinger, and T. Musch, “A SiGe fractional-N frequency synthesizer for mm-wave wideband FMCWradar transceivers,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 3, pp. 847–858, Mar. 2016.

J. H. Song, C. Cui, S. K. Kim, B. S. Kim, and S. Nam, “A low-phase-noise 77-GHz FMCW radar transmitter with a 12.8-GHz PLL and a 6 frequency multiplier,” IEEE Microw. Compon. Lett., vol. 26, no. 7, pp. 540–542, Jul. 2016.

H. Jia, L. Kuang, W. Zhu, Z. Wang, F. Ma, Z. Wang, and B. Chi, “A 77 GHz frequency doubling two-path phased-array FMCW transceiver for automotive radar,” IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2299–2311, Oct. 2016.

I. M. Milosavljevic, Ð. P. Glavonjic, D. P. Krcum, L. V. Saranovac, and V. M. Milovanovic, “A highly linear and fully-integrated FMCW synthesizer for 60 GHz radar applications with 7 GHz bandwidth,” Springer Analog Integr. Circuits Signal Process., vol. 90, no. 3, pp. 591–604, Mar. 2017.

M. Hitzler, S. Saulig, L. Boehm, W. Mayer, W. Winkler, N. Uddin, and C.Waldschmidt, “Ultracompact 160-GHz FMCW radar MMIC with fully integrated offset synthesizer,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1682–1691, May 2017.

A. Townley, P. Swirhun, D. Titz, A. Bisognin, F. Gianesello, R. Pilard, C. Luxey, and A. M. Niknejad, “A 94-GHz 4TX-4RX phased-array FMCW radar transceiver with antenna-in-package,” IEEE J. Solid-State Circuits, vol. 52, no. 5, pp. 1245–1259, May 2017.

E. Öztürk, D. Genschow, U. Yodprasit, B. Yilmaz, D. Kissinger, W. Debski, and W. Winkler, “A 60-GHz SiGe BiCMOS monostatic transceiver for FMCW radar applications,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 12, pp. 5309–5323, Dec. 2017.

Federal Communications Commission (FCC), “Operation within the band 57-71 GHz, Tile 47 CFR Part 15, Subpart C,

H 15.255,” Nov. 2016.

B. P. Ginsburg, K. Subburaj, S. Samala, K. Ramasubramanian, J. Singh, S. Bhatara, S. Murali, D. Breen, M. Moallem, K. Dandu, S. Jalan, N. Nayak, R. Sachdev, I. Prathapan, K. Bhatia, T. Davis, E. Seok, H. Parthasarathy,

R. Chatterjee, V. Srinivasan, V. Giannini, A. Kumar, R. Kulak, S. Ram, P. Gupta, Z. Parkar, S. Bhardwaj, Y. C. Rakesh, K. A. Rajagopal, A. Shrimali, and V. Rentala, “A multimode 76-to-81 GHz automotive radar transceiver with autonomous monitoring,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)

Dig. Tech. Papers, Feb. 2018, pp. 158–160.

V. Winkler, “Range Doppler detection for automotive FMCW radars,” in Proc. Eur. Radar Conf., Oct. 2007, pp. 166–169.

W.Wang, X. Chen, and H.Wong, “A system-on-chip 1.5 GHz phase locked loop realized using 40nm CMOS technology,” Facta Universitatis, Series: Electronics and Energetics, vol. 31, no. 1, pp. 101–113, Mar. 2018.

S. Kang, J. C. Chien, and A. M. Niknejad, “A W-band low-noise PLL with a fundamental VCO in SiGe for millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2390–2404, Oct. 2014.

A. Ergintav, Y. Sun, F. Herzel, H. J. Ng, G. Fischer, and D. Kissinger, “A 61 GHz frequency synthesizer in SiGe BiCMOS for 122 GHz FMCW radar,” in Proc. Eur. Microw. Integr. Circuits Conf., Oct. 2016, pp. 325–328.

G. Liu, A. Trasser, and H. Schumacher, “A 64-84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 3739–3748, Dec. 2012.

H. J. Ng, A. Fischer, R. Feger, R. Stuhlberger, L. Maurer, and A. Stelzer, “A DLL-supported, low phase noise fractional-N PLL with a wideband VCO and a highly linear frequency ramp generator for FMCW radars,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 12, pp. 3289–3302, Dec. 2013.

J. Vovnoboy, R. Levinger, N. Mazor, and D. Elad, “A dual-loop synthesizer with fast frequency modulation ability for 77/79 GHz FMCW automotive radar applications,” IEEE J. Solid-State Circuits, vol. 53, no. 5, pp. 1328–1337, May

A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mmwave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2635–2649, Nov. 2011.

I. M. Milosavljevic, D. P. Krcum, D. P. Glavonjic, S. P. Jovanovic, V. R. Mihajlovic, D. M. Tasovac, and V. M. Milovanovic, “A SiGe highly integrated FMCW transmitter module with a 59.5-70.5 GHz single sweep cover,” IEEE

Trans. Microw. Theory Techn., vol. 66, no. 9, pp. 4121–4133, Sep. 2018.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670