ELECTROSTATIC DISCHARGE CURRENTS REPRESENTATION USING THE ANALYTICALLY EXTENDED FUNCTION WITH P PEAKS BY INTERPOLATION ON A D-OPTIMAL DESIGN

Karl Lundengard, Milica Rančić, Vesna Javor, Sergei Silvestrov

DOI Number
10.2298/FUEE1901025L
First page
25
Last page
49

Abstract


In this paper the Analytically Extended Function
(AEF) with p peaks is used for representation of the electrostatic
discharge (ESD) currents and lightning discharge currents. The
fitting to data is achieved by interpolation of certain data points.
In order to minimize unstable behaviour, the exponents of the
AEF are chosen from a certain arithmetic sequence and the
interpolated points are chosen according to a D-optimal design.
The method is illustrated using several examples of currents
taken from standards and measurements.

Keywords

Analytically extended function, electrostatic discharge (ESD) current, employed to increase BVCEO without sacrificin

Full Text:

PDF

References


K. Lundengard, M. Rancic, V. Javor, and S. Silvestrov, ”Multi-Peaked Analytically Extended Function Representing Electrostatic Discharge (ESD) Currents,” in AIP Conference Proceedings ICNPAA, La Rochelle, France, pp. 1–10, 2016.

V. Javor, ”Multi-Peaked Functions for Representation of Lightning Channel-Base Currents,” 31st Int. Conference on Lightning Protection ICLP 2012, September 2-7, 2012, Proceedings of papers, Vienna, Austria,

V. Javor, ”New function for representing IEC 61000-4-2 standard electrostatic discharge current,” Facta Universitatis, Series: Electronics and Energetics, vol. 27(4), pp. 509–520, 2014.

V. Javor, K. Lundengard, M. Rancic, and S. Silvestrov, ”Measured electrostatic discharge currents modeling and simulation,” in Proc. of TELSIKS 2015, Nis, Serbia, pp. 209–212, 2015.

V. Javor, ”New Function for Representing IEC 61000-4-2 Standard Electrostatic Discharge Current,” (invited paper), Facta Universitatis, Series Electronics and Energetics, Vol. 27(4), pp. 509–520, University of Nis, Serbia, 2014.

V. Javor, K. Lundengard, M. Rancic, S. Silvestrov, ”Analytical Representation of Measured Lightning Currents and Its Application to Electromagnetic Field Estimation,” IEEE Transactions on Electromagnetic Compatibility, vol. 60(5), pp. 1415–1426, 2018.

K. Lundengard, M. Rancic, V. Javor, and S. Silvestrov, ”Application of the Marquardt least-squares method to the estimation of Pulse function parameters,” in AIP Conference Proceedings 1637, ICNPAA, Narvik, Norway, 2014, pp. 637–646.

K. Lundengard, M. Rancic, V. Javor, and S. Silvestrov, ”Estimation of Pulse function parameters for approximating measured lightning currents using the Marquardt least-squares method,” in Conference Proceedings, EMC Europe, Gothenburg, Sweden, 2014, pp. 571–576.

K. Lundengard, M. Rancic, V. Javor, and S. Silvestrov, ”An Examination of the multi-peaked analytically extended function for approximation of lightning channel-base currents,” in Proceedings of Full Papers, PES 2015, Nis, Serbia, Electronic, arXiv:1604.06517 [physics.comp-ph], 2015.

K. Lundengard, M. Rancic, V. Javor, and S. Silvestrov, ”Application of the multi-peaked analytically extended function to representation of some measured lightning currents,” Serbian Journal of Electrical Engineering, vol. 13(2), pp. 1–11, 2016.

K. Lundengard, M. Rancic, V. Javor, and S. Silvestrov, ”Estimation of parameters for the multi-peaked AEF current functions,” Methodol. Comp. Appl. Probab., pp. 1–15, 2016.

K. Lundengard, M. Rancic, V. Javor, and S. Silvestrov, ”On some properties of the multi-peaked analytically extended function for approximation of lightning discharge currents” in: Sergei Silvestrov and Milica Rancic, editors, Engineering Mathematics I: Electromagnetics, Fluid Mechanics, Material Physics and Financial Engineering, volume 178 of Springer Proceedings in Mathematics & Statistics. Springer

International Publishing, 2016.

K. Lundengard, M. Rancic, V. Javor, and S. Silvestrov, ”Novel Approach to Modelling of Lightning Current Derivative,” Facta Universitatis, Series Electromagnetics and Energetics, vol. 30(2), pp. 245–256, University of Nis, Serbia 2017.

EMC - Part 4-2: Testing and Measurement Techniques - Electrostatic Discharge Immunity Test. IEC International Standard 61000-4-2, basic EMC publication, 1995+A1:1998+A2:2000.

EMC - Part 4-2: Testing and Measurement Techniques - Electrostatic Discharge Immunity Test. IEC International Standard 61000-4-2, basic EMC publication, Ed. 2, 2009.

P. S. Katsivelis, I. F. Gonos, and I. A. Stathopulos, ”Estimation of parameters for the electrostatic discharge current equation with real human discharge events reference using genetic algorithms,” Meas. Sci. Technol., vol. 21, pp. 1–6, 2010.

Protection against lightning electromagnetic impulse - Electrostatic Discharge Immunity Test. IEC International Standard 61312-1, 1995.

F. Heidler and J. Cveti´c, ”A Class of Analytical Functions to Study the Lightning Effects Associated With the Current Front,” ETEP, vol. 12(2), pp. 141–150, 2002.

F. Delfino, R. Procopio, M. Rossi, F. Rachidi, ”Prony Series Representation for the Lightning Channel Base Current,” IEEE Transactions on Electromagnetic Compatibility, vol. 54(2), pp. 308–315, 2012.

A. Hussein, M. Milewski, W. Janischewskyj, ”Correlating the Characteristics of the CN Tower Lightning Return-Stroke Current with Those of Its Generated Electromagnetic Pulse,” IEEE Transactions on Electromagnetic Compatibility, vol. 50(3), pp. 642–650, 2008.

G. P. Fotis, and L. Ekonomu, ”Parameters’ optimization of the electrostatic discharge current equation,” Int. journal on Power System Optimization, vol. 3(2), pp. 75–80, 2011.

V. B. Melas, Functional Approach to Optimal Experimental Design. New York: Springer, 2006.

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1964.

T. S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, Science Publishers, Inc., New York, 1978.

K. Driver and K. Jordaan, ”Bounds for extreme zeros of some classical orthogonal polynomials”, J. Approx. Theory 164(9), pp. 1200–1204, 2012.

F. R. Lucas, ”Limits for zeros of Jacobi and Laguerre polynomials”, Proceeding Series of the Brazilian Society of Applied and Computational Mathematics 3(1), 2015.

MATLAB and Optimization Toolbox Release 2015a, functon lsqnonlin, The MathWorks, Inc., Natick, Massachusetts, United States.

T.F. Coleman and Y. Li. ”On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds.”, Mathematical Programming 67(2), pp. 189-224, 1994.

T.F. Coleman and Y. Li. ”An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds.”, SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.

A. Rubinstein, C. Romero, M. Paolone, F. Rachidi, M. Rubinstein, P. Zweiacker, and B. Daout, Lightning measurement station on Mount S¨antis in Switzerland, in Proc. Xth Int. Symp. Lightning Protection, Curitiba,

Brazil, pp. 463–468, 2009.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670