Milica G Kisic, Nelu V. Blaž, Kalman B. Babković, Andrea Marić, Goran J. Radosavljević, Ljiljana D. Živanov, Mirjana S. Damnjanović

DOI Number
First page
Last page


The goal of this paper is to investigate the performance of a wireless passive displacement sensor. Displacement sensor based on the heterogeneous integration process combines traditional fabrication technologies PCB (Printed Circuit Board) and LTCC (Low Temperature Co-fired Technology) with a flexible polyimide foil. The proposed sensor uses the coil as an essential part, multiple spacers and a polyimide foil as a flexible membrane with a piece of ferrite attached to it. With the displacement of the polyimide foil, the ferrite gets closer to the coil causing an increase in its inductance and a decrease of the resonant frequency of the system (coil, ferrite and antenna). Simulation results showed that sensors with equal outer dimensions but different internal structures exhibit different performances. Two prototypes of the sensor with different ferrite dimensions are designed, fabricated and characterized. Finally, their performances are compared.

Full Text:



G. Y. Tian, Z. X. Zhao, R. W. Baines, "The Research of Inhomogeneity in Eddy Current Sensors", Sensors and Actuators A, vol. 69, pp. 148-151, 1998.

D. Hofstetter, H. P. Zappe and R. Dandliker, "Optical Displacement Measurement with GaAs/AlGaAs-Based Monolithically Integrated Michelson Interferometers", Journal Lightwave Technology, vol. 15, no. 4, pp. 663 – 670, April 1997.

S. J. Lee, Y. Melikhov, C. M. Park, H. Hauser and D. C. Jiles, "Analysis of a Remote Magneto-Optic Linear Displacement Sensor Using a Jones Matrix Approach", IEEE Transaction on Magnetics, vol. 42, no. 10, pp. 3273 – 3275, October 2006.

A. Bergamin, G. Cavagnero and G. Mana, "A Displacement and Angle Interferometer with Subatomic Resolution", Review of Scientific Instruments, vol. 64, pp. 3076-3081, August 1993.

M. M. Miller, P. Lubitz, G. A. Prinz, J. J. Krebs and A. S. Edelstein, "Development of a High Precision Absolute Linear Displacement Sensor utilizing GMR Spin-valves", IEEE Transaction on Magnetics, vol. 33, no. 5, pp. 3388- 3390, September 1997.

A. Arkadan, S. Subramaniam, Sivanesan and O. Douedari, "Design Optimization of a Capacitive Transducer for Displacement Measurement", IEEE Transaction on Magnetics, vol. 35, pp. 1869 - 1872, May 1999.

M. Hirasawa, M. Nakamura and M. Kanno, "Optimum Form of Capacitive Transducer for Displacement Measurement", IEEE Transaction on Instrumentation and Measurement, vol. 3, pp. 276 – 280, December 1984.

M. Kim and W. Moon, "A New Linear Encoder-like Capacitive Displacement Sensor", Measurement vol. 36, pp. 481–489, July 2006.

M. Kim, W. Moon, E. Yoon and K - R Lee, "A New Capacitive Displacement Sensor with High Accuracy and Long-Range", Sensors and Actuators A, vol. 130-131, pp. 135–141, August 2006.

D. Kang, W. Lee and W. Moon, "A Technique for Drift Compensation of an Area-varying Capacitive Displacement Sensor for Nano-metrology", In Proc. Eurosensors XXIV, Procedia Engineering 5, September 5-8, 2010, Linz, Austria, pp. 412–415

F. Zhu, J. W. Spronck and W. C. Heerens, "A Simple Capacitive Displacement Sensor", Sensor and Actuator A, 25–27 (1991) 265–269.

G. Gao, Y. Wang, S. Yan and Y. Han, "Design of Capacitive Displacement Sensor and Measuring Algorithm Based on Modulated Differential Pulse Width", Journal of Chemical and Pharmaceutical Research, vol. 6, pp. 704-711, 2014.

M. S. Damnjanovic, L. D. Zivanov, L. F. Nagy, S. M. Djuric and B. N. Biberdzic, "A Novel Approach to Extending the Linearity Range of Displacement Inductive Sensor", IEEE Transaction on Magnetics, vol. 44, no. 11, pp. 4123- 4126, November 2008.

A. Petropoulos, G. Kaltsas, D. Goustouridis, E. Gogolides, "A Flexible Capacitive Device for Pressure and Tactile Sensing", Proceedings of the Eurosensors XXIII conference, Procedia Chemistry, vol. 1, pp. 867–870, September 2009.

J. Engel, J. Chen and C. Liu, "Development of Polyimide Flexible Tactile Sensor Skin", Journal of Micromechanics and Microengineering, vol. 13, pp. 359–366, February 2003.

Y. J. Yang, M Y Cheng, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang and K. C. Fan, "An Integrated Flexible Temperature and Tactile Sensing Array using PI-copper films", Sensors Actuators A, vol. 143, pp. 143–153, May 2008.

M. G. Kisić, N. V. Blaž, B. Dakić, A. Marić, G. J. Radosavljević, Lj. D. Živanov and M. S. Damnjanović, "A Flexible Polyimide Based Device for Displacement Sensing", Proc. 29th International Conference on Microelectronics (MIEL 2014), Belgrade, Serbia, 12-15 May, 2014, pp. 1-4.

GTS Flexible Materials Ltd, available at:

N. Blaž, A. Marić, I. Atassi, G. Radosavljević, Lj. Živanov,H. Homolka and W. Smetana, "Complex Permeability Changes of Ferritic LTCC Samples with Variation of Sintering Temperatures", IEEE Transaction on Magnetics, vol. 48, pp. 1563-1566, 2012.

O. Akar, T. Akin and K. Najafi, "A Wireless Batch Sealed Absolute Capacitive Pressure Sensor", Sensors and Actuators A, vol. 95, pp. 29–38, 2001.

S. S. Mohan, M. M. Hershenson, S. P. Boyd, and T. H. Lee, "Simple Accurate Expressions for Planar Spiral Inductances", IEEE Journal of solid-state circuits, vol. 34, pp 1419- 1424, 1999.

W. A. Roshen and D. E. Turcotte, "Planar Inductors on Magnetic Substrates", IEEE Transaction on Magnetics, vol. 24, no. 6, pp. 3213- 3216, November 1988.

W. A. Roshen, "Analysis of Planar Sandwich Inductors by Current Images", IEEE Transaction on Magnetics, vol. 26, no 5. September 1990.

CST Microwave Studio Suite, Computer Simulation Technology,


  • There are currently no refbacks.

ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626