AN INEXPENSIVE ANEMOMETER USING ARDUINO BOARD

Elson Avallone, Paulo César Mioralli, Pablo Sampaio Gomes Natividade, Paulo Henrique Palota, José Ferreira da Costa, Jonas Rafael Antônio, Sílvio Aparecido Verdério Junior

DOI Number
10.2298/FUEE1903359A
First page
359
Last page
368

Abstract


In all studies involving wind speed, such as meteorology, wind turbines and agriculture accurate speed information for decision making is required. There are several types of anemometers, with medium and high costs, such as cup, hot wire and pitot tubes,  the hot wire being more sensitive and expensive than others. The device developed in this work is the cup anemometer, that is easy to build. The great advantage of this device is the low cost, with an approximate value of US$ 50.00, using simple materials that are  easy to find in commercial stores. The Reed Switch sensor is also another advantage as it does not require a sophisticated programming, as well as the open platform Arduino. The use of theoretical aerodynamic drag coefficients and the presented calculations resulted in values very close to a commercial anemometer. The coefficient of determination between the cup Anemometer and the standard sensor of Meteorological Research Institute IPMet/Brazil is R2=0.9999, indicating  strong correlation between the instruments. As the reference anemometer (IPMet) has high embedded technology and the prototype is low cost, we conclude that the project has an attractive cost benefit for possible development and production, reaching the objective of this work.

Keywords

Anemometer, low cost, airspeed measurement, Arduino, open hardware

Full Text:

PDF

References


E. Avallone, P.C. Mioralli, P. S. G. Natividade, P. H. Palota, J.F. da Costa, J. R. Antonio, S. A. V. Junior, “Low Cost Cup Electronic Anemometer”, In Proceedings of the 4th Virtual International Conference on Science, Technology and Management in Energy, Niš, Serbia, vol. 1, pp. 9–12.

O. Severino Junior, “Construção de uma estação meteorológica eletrônica no Câmpus Catanduva-SP”. Federal Institut of Education, Science and Technology of São Paulo, 23-nov-2018.

P. C. Mioralli, E. Avallone, P. S. G. Natividade, P. H. Palota, J. F. Costa, e S. A. Verdério Júnior, ENACO - Energia e Aplicações Correlatas (Energy and Related Applications). .

T. R. Robinson, “On a New Anemometer”, In Proceedings of the Royal Irish Academy (1836-1869), vol. 4, pp. 566–572, 1847.

O. F. Hansen e L. Kristensen, “Fragments of the Cup Anemometer History”, WindSensor, vol. 1, no 1, pp. 3, fev. 2005.

M. A. Varejão-Silva, Meteorologia e climatologia, vol. 1, 2 vols. Recife - PE - Brazil.

A. C. Xavier, C. W. King, e B. R. Scanlon, “Daily gridded meteorological variables in Brazil (1980-2013): DAILY GRIDDED METEOROLOGICAL VARIABLES IN BRAZIL (1980-2013)”, International Journal of Climatology, vol. 36, no 6, pp. 2644–2659, maio 2016.

M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, e Z. Yan, “A review on the forecasting of wind speed and generated power”, Renewable and Sustainable Energy Reviews, vol. 13, no 4, p. 915–920, maio 2009.

P. Luca, A. Benedetto, B. Enrico, G. Francesco, M. Marco, e M. Tommaso, “Integrated Design and Testing of an Anemometer for Autonomous Sail Drones”, Journal of Dynamic Systems, Measurement, and Control, vol. 140, no 5, p. 055001, dez. 2017.

E. Avallone, D. G. Cunha, A. Padilha, e V. L. Scalon, “Electronic multiplex system using the Arduino platform to control and record the data of the temperatures profiles in heat storage tank for solar collector”, Int J Energy Environ Eng, vol. 7, no 4, pp. 1–8, ago. 2016.

E. Avallone, “Estudo de um coletor solar, tipo tubo evacuado modificado, utilizando um concentrador cilíndrico parabólico (CPC)”, PhD Thesis, Universidade Estadual Paulista “Júlio de Mesquita Filho” - UNESP/FEB, Brazil, 2017.

E. Avallone, A. I. Sato, V. L. Scalon, e A. Padilha, “Analisys of thermal efficiency of a modified solar collector type evacuated tube”, Reterm, vol. 13, no 1, pp. 3–8, jun-2014.

E. Avallone, “Avaliação da Eficiência Térmica de um Coletor Solar Tipo Tubo Evacuado Modificado”, Master Thesis, Universidade Estadual Paulista - Júlio de Mesquita Filho, Campus de Bauru, 2013.

T. Ali, S. Nayeem, M. O. Faruk, M. Shidujaman, e S. M. Ferdous, “Design & implementation of a linear IC based low cost anemometer for wind speed measurement”, apresentado em International Conference on Informatics, Electronics & Vision, Dhaka, Bangladesch, 2012, p. 99–102.

C. D. diCenzo, B. Szabados, e N. K. Sinha, “Digital Measurement of Angular Velocity for Instrumentation and Control”, Transactions on Industrial Electronics and Control Instrumentation, vol. 23, no 1, fev-1976.

M. P. del Valle, J. A. U. Castelan, Y. Matsumoto, e R. C. Mateos, “Low Cost Ultrasonic Anemometer”, In Proceedings of the 2007 4th International Conference on Electrical and Electronics Engineering, 2007, pp. 213–216.

R. N. Farrugia e T. Sant, “Modelling wind speeds for cup anemometers mounted on opposite sides of a lattice tower: A case study”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 115, pp. 173–183, abr. 2013.

J. T. Fasinmirin, P. G. Oguntunde, K. O. Ladipo, e L. Dalbianco, “Development and calibration of a self-recording cup anemometer for wind speed measurement”, African Journal of Environmental Science and Technology, vol. 5, no 3, 2011.

A. Accetta, M. Pucci, G. Cirrincione, e M. Cirrincione, “On-line wind speed estimation in IM wind generation systems by using adaptive direct and inverse modelling of the wind turbine”, In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 1–8.

C. A. Sampaio, M. N. Ullmann, e M. Camargo, “Desenvolvimento e avaliacao de anemometro de copos de facil construcao e operacao.”, Revista de Ciencias Agroveterinarias, vol. 4, no 1, pp. 11–16, 2005.

T. L. Funk, “Anemometry tools and procedures for greenhouse experiments”, PhD Thesis, University of Illinois at Urbana-Champaign, Illinois - USA, 1994.

S. Pindado, J. Cubas, e F. Sorribes-Palmer, “On the harmonic analysis of cup anemometer rotation speed: A principle to monitor performance and maintenance status of rotating meteorological sensors”, Measurement, vol. 73, pp. 401–418, set. 2015.

S. Pindado, J. Perez-Alvarez, e S. Sanches, “On cup anemometer rotor aerodynamics”, Sensors, vol. 14, pp. 6198–6217, 2012.

R. Wagner, M. Courtney, J. Gottschall, e P. Lindelöw-Marsden, “Accounting for the speed shear in wind turbine power performance measurement: Accounting for speed shear in power performance measurement”, Wind Energy, vol. 14, no 8, pp. 993–1004, nov. 2011.

Super Ultraminiature, “Reed switch”. 2012.

Arduino, “Arduino”, Arduino, 2018. [Online]. Disponível em: https://www.arduino.cc/.

S. Pindado, J. Cubas, e F. Sorribes-Palmer, “The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute”, Sensors, vol. 14, pp. 21418–21452, 2014.

B. R. Munson, D. F. Young, T. H. Okiishi, e W. W. Huebsch, Fundamentals of fluid mechanics, 6o ed, vol. 1, 1 vols. U.S.A.: Wiley, pp. 509-510, 2009.

R. E. Predolin, “Desenvolvimento de um sistema de aquisição de dados usando plataforma aberta”, Master’s thesis, Universidade Estadual Paulista “Júlio de Mesquita Filho” - UNESP/FEB, Brazil, 2017.

E. Avallone, “Estudo de um coletor solar, tipo tubo evacuado modificado, utilizando um concentrador cilíndrico parabólico (CPC)”, PhD Thesis, Universidade Estadual Paulista “Júlio de Mesquita Filho” - UNESP/FEB, Brazil, 2017.

IPMet Unesp, “IPMet Unesp”. [Online]. Disponível em: https://www.ipmet.unesp.br/. [Acessado: 09-jan-2019].

Young Company, “Wind Monitor - Model 05103”. R.M. YOUNG COMPANY.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670