Zahra Taheri, Abdalhossein Rezai, Hamid Rashidi

DOI Number
First page
Last page


Quantum-dot Cellular Automata (QCA) technology has become a promising and accessible candidate that can be used for digital circuits implementation at Nanoscale, but the circuit design in the QCA technology has been limited due to fabrication high-defect rate. So, this issue is an interesting research topic in the QCA circuits design. In this study, a novel 3-input Fault Tolerance (FT) Majority Gate (MG) is developed. Accordingly, an efficient 1-bit QCA full adder is developed using the developed 3-input MG. Then, a new 4-bit FT QCA Ripple Carry Adder (RCA) is developed based on the proposed 1-bit FT QCA FA. The developed circuits are implemented in the QCADesigner tool version 2.0.3. The results indicate that the developed QCA circuits provide advantages compared to other QCA circuits in terms of double and single cell missing defect, area and delay time.


Nanoelectronics, fault-tolerance, majority gate, QCA FA, ripple carry adder, quantum-dot cellular automata

Full Text:



A. Naderi, M. Ghodrati, "Binary An efficient structure for T-CNTFETs with intrinsic-n-doped impurity distribution pattern in drain region", Turk J Elec Eng & Comp Sci., vol. 26, no. 5, pp. 2335–2346, 2018.

A. Karimi, A. Rezai, "A design methodology to optimize the device performancein CNTFET", ECS Journal of Solid State Science and Technology, vol. 6, no. 8, pp. 97–102, 2017.

M. Shafizadeh, A. Rezai, "Improved device performance in a CNTFET using LaO3high-κ dielectrics", Journal of Computational Electronics, vol. 16, no. 2, pp. 221–227, 2017.

M. Zareiee, "A new construction of the dual gate transistor for the analog and digital applications ", Int. J. Electron. Commun., vol. 100, no. 1, pp. 114–118, 2019.

A. Naderi, K. Moradi Satari, F. Heirani, " SOI-MESFET with a layer of metal in buried oxide and a layer of SiO2 in channel to improve RF and breakdown characteristics ", Materials Science in Semiconductor Processing, vol. 88, no. 1, pp. 57–64, 2018.

M. Zareiee, "A New Structure for Lateral Double Diffused MOSFET to Control the Breakdown Voltage and the On-Resistance", Silicon,, pp. 1–9, 2019.

C. S. Lent, P. D. Tougaw, W. Porod, G.H. Bernstein, "Quantum cellular automata", Nano., vol. 4, no. 1, pp. 49–57, 1994.

H. Rashidi, A. Rezai, "Design of novel efficient multiplexer construction for quantum-dot cellular automata", J. Nano Electr. Phys., vol. 9, no. 1, pp. 1–7, 2017.

H. Rashidi, A. Rezai, S. Soltany, "High-performance multiplexer construction for quantum-dot cellular automata", J. Comput. Electr., Vol. 15, No. 3, pp. 968–981, 2016.

D. Mokhtari, A. Rezai, H. Rashidi, F. Rabeie, S. Emadi, A. Karimi, "Design of novel efficient full adder construction for quantum-dot cellular automata technology", Facta Universitatis, Series: Electronics and Energetics, vol. 31, no. 2, pp. 279–285, 2018.

B. Sen, M. Goswami, S. Mazumdar, B. K. Sikdar, " Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers", Comput. Electr. Eng., vol. 45, pp. 42–54, 2015.

A. Roohi, R. F. DeMara, N. Khoshavi, "Design and evaluation of an ultra-area-efficient FT QCA full adder", Microelectr. J., vol. 46, no. 6, pp. 531–542, 2015.

M. Niknezhad Divshali, A. Rezai, S.S. Falahieh Hamidpour, "Design of novel coplanar counter circuit in Quantum-dot cellular automata technology", In transaction journal of theoretical physics, 2019.

A Shiri, A Rezai, H Mahmoodian, "Design of efficient coplanar 1-bit comparator circuit in QCA technology", Facta Universitatis, Series: Electronics and Energetics, vol. 32, no. 1, pp.119–128, 2019.

I. Edrisi Arani, A. Rezai, "Novel Circuit Design of Serial-Parallel Multiplier In Quantum-dot Cellular Automata Technology", J. Comput. Electr., vol. 17, no. 4, pp.1771–1779, 2018.

H. Roshany, A. Rezai, " Novel efficient circuit design for multilayer QCA RCA", Int. J. Theor. Phys., vol. 58, no. 6, pp. 1745–1757, 2019.

H. Cho, E. E Swartzlander, "Adder and multiplier design in quantum-dot cellular automata", IEEE Trans Comput., vol. 58, no. 6, pp. 721–727, 2009.

Y. Adelnia, A. Rezai, "A novel adder circuit design in quantum-dot cellular automata technology", Int. J. Theor. Phys., vol. 58, no. 1, pp. 184–200, 2019.

M. R. Azghadi, O. Kavehei, K. Navi, "A novel design for quantum-dot cellular automata cells and full-adders", J. Appl. Sci., vol. 7, no. 22, pp. 3460–3468, 2007.

H. Rashidi, A. Rezai, "High-performance full adder construction in quantum-dot cellular automata", J. Eng., vol. 2017, no. 7, pp. 394–402, 2017.

M. Hayati, A. Rezaei, "Design of novel efficient adder and subtractor for quantum-dot cellular automata", Int. J. Circuit Theor. Appl., vol. 43, no. 10, pp. 1446–1454, 2014.

M. Kianpour, R. S. Nadooshan, K. Navi, "A novel design of 8-bit adder/subtractor by quantum-dot cellular automata", J. Comput. Sys. Sci., vol. 80, no. 7, pp. 1404–1414, 2014.

B. Sen, A. Rajoria, B. K. Sikdar, "Design of efficient full adder in quantum-dot cellular automata”, Sci World J., vol. 2013, pp. 1–10, 2013.

M. Balali, A. Rezai, H. Balali, F. Rabiei, S. Emadi, " Towards Coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate", Result Phys., vol. 7, pp. 1389–1395, 2017.

S. R. Kassa, R. K. Nagaria, "A novel design of quantum-dot cellular automata 5-input MG with some physical proofs", J. Comput. Electr., vol. 15, no. 1, pp. 324–334, 2016.

R. Farazkish, F. Khodaparast, "Design and characterization of a new FT full adder for quantum-dot cellular automata", Microprocess Microsyst., vol. 39, no. 6, pp. 426–433, 2015.

S. Sheikhfaal, S. Angizi, S. Sarmadi, M. H. Moaiyeri, S. Sayedsalehi, "Designing efficient QCA logical circuits with power dissipation analysis", Microelecter. J., vol. 46, no. 6, pp. 462–471, 2015.

H. B. Sousan, M. Mosleh, S. Setayeshi, "Designing and Implementing a Fast and Robust Full-Adder in Quantum-Dot Cellular Automata (QCA) Technology", J. Adv. Comput. Res., vol. 6, no. 1, pp. 27–45, 2015.

M. Goswami, B. Sen, R. Mukherjee, B. K Sikdar, "Design of testable adder in Quantom-dot Cellular Automata With Fault Secure Logic", Microelectr J., vol. 60, pp. 1–12, 2017.

K. Navi, R. Farazkish, S. Sayedsalehi, M. R. Azghadi, "A new quantum-dot cellular automata full-adder", Microelectr J., vol. 41, no. 12, pp. 820–826, 2010.

S. Angizi, E. Alkaldy, N. Bagherzadeh, K. Navi, " Novel robust single layer wire-crossing approach for exclusive-OR sum of products logic design with quantum-dot cellular automata", J. Low Power Electr., vol. 10, no. 2, pp. 259–271, 2014.

S. Hashemi, M. Tehrani, K. Navi, "An efficient quantum-dot cellular automata full-adder", Sci. Res. Essays., vol. 7, no. 2, pp. 177–189, 2012.

I. Hänninen, J. Takala, "Binary adders on quantum-dot cellular automata", J. Signal. Proc. Syst., vol. 58 no. 1, pp. 87–103, 2010.

P. D. Tougaw, C. S. Lent, "Logical devices implemented using quantum cellular automata", J. Appl. Phys., vol. 75, no. 3, pp. 1818–1825, 1993.

M. Balali, A. Rezai, " Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology", International Journal of Theoretical Physics, vol. 57, no. 7, pp. 1948–1960, 2018.

R. Mokhtarii, A. Rezai, "Investigation and Design of Novel Comparator in Quantum-dot Cellular Automata Technology", Journal of Nano-& Electronic Physics, vol. 10, no. 5, p. 05014(4pp), 2018.

M. Niknezhad Divshali, A. Rezai, A. Karimi "Investigation and Design of Novel Comparator in Quantum-dot Cellular Automata Technology", International Journal of Theoretical Physics, vol. 57, no. 11, pp. 3326–3339, 2018.

A. Fijany, B. N. Toomarian, "New design for quantum dots cellular automata to obtain Fault Tolerant logic gates", J. Nano. Res., vol. 3, no. 1, pp. 27–37, 2001.

R. Farazkish, K. Navi, "New efficient five-input majority gate for quantum-dot cellular automata”, J. Nano. Res., vol. 14, no .11, pp. 1–6, 2012.

R. Farazkish, S. Sayedsalehi, K. Navi, "Novel design for quantum dots cellular automata to obtain FT majority gate", J. Nano., vol. 2013, pp. 1–7, 2012.

M. Dalui, B. Sen, B. K. Sikdar, "Fault Tolerant QCA logic design with coupled majority-minority gate", Int. J. Comput. Appl., vol. 1, no. 29, pp. 81–87, 2010.

H. Du, H. Lv, Y. Zhang, F. Peng, G. Xie, "Design and analysis of new FT majority gate for quantum-dot cellular automata", J. Comput. Electr., vol. 15, no. 4, pp. 1484–1497, 2016.

B. Sen, M. Dutta, R. Mukherjee, R. K. Nath, A.P. Sinha, B.K. Sikdar, "Towards the design of hybrid QCA tiles targeting high Fault Tolerance", J. Compu. Electr., vol. 15, no. 2, pp. 429–445, 2016.

M. Momenzadeh, M. Ottavi, F. Lombardi, "Modeling QCA defects at molecular-level in combinational circuits", In Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Syst., 3-5 Oct 2005, pp. 208–216,

Y. Mahmoodi, M. A .Tehrani, "Novel Fault Tolerant QCA Circuits”, In Proc. Conf. Electr. Comput. Eng., 20-22 May 2014, pp. 20–22.

M. Rahimpour Gadim, N. Jafari Navimipour "A new three-level Fault Tolerance arithmetic and logic unit based on quantum dot cellular automata", Microsyst. Technol., 2017.

J. Huang, M. Momenzadeh, F. Lombardi, "On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire", J. Electr. Test., vol. 23, no. 2-3, pp. 163–174, 2017.

A. Newaz Bahar, Md. Mo. Asaduzzaman, "A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis", Alexandria Engineering Journal, vol. 57, no. 2, pp. 729–738, 2018.


  • There are currently no refbacks.

ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626