Vyacheslav Pershenkov, Alexander Bakerenkov, Alexander Rodin, Vladislav Felitsyn, Alexander I. Zhukov, Vitaly Telets, Vladimir Belyakov

DOI Number
First page
Last page


Possible physical mechanism of enhanced low dose rate sensitivity (ELDRS) and reduced low dose rate sensitivity (RLDRS)in bipolar devices is described. Modification of the low dose rate conversion model is presented. The enhanced or reduced sensitivity can be connected with a specific position of the effective Fermi level relatively acceptor and donor radiation-induced interface traps. The qualitative and quantitative analysis of the low dose rate effects is presented. The effect of the oxide trapped charge on the value of the oxide electric field and the yield of the oxide charge were taken into account. It leads to dependence of the accumulation of radiation-induced oxide charge and interface traps on the dose rate. In enhancement version the ELDRS and RLDRS conversion model describes the low dose rate effect in as “true” dose rate effect.


total dose, low dose rate, bipolar devices, ELDRS, conversion model

Full Text:



V. S. Pershenkov, A. S. Bakerenkov, A. S. Rodin, V. A. Felitsyn, V. A. Telets, V. V. Belyakov, “Reduced low dose rate sensitivity (RLDRS) in bipolar devices”, In Proceedings of the 2019 31st International Conference on Microelectronics (MIEL 2019), Niš, Serbia, September 16th-18th, 2019, pp. 185–188.

R.L. Pease, R.D.Schrimpf, D.M. Fleetwood, “ELDRS in bipolar linear circuits: A review”, IEEE Transactions on Nuclear Science, vol. 56, no. 4, 2009, pp. 1894–1908, 2009.

D.M. Fleetwood, S. L. Kosier, R. N. Nowlin, R. D. Schrimpf, R. A. Reber, Jr., M. DeLaus, P. S. Winokur, A. Wei, W. E. Combs and R. L. Pease, “Physical Mechanisms Contributing to Enhanced Bipolar Gain Degradation at Low Dose Rates”, IEEE Trans. Nucl. Sci., vol. NS-41, no. 6, pp.1871–1883, 1994.

H.P. Hjalmarson, R.L. Pease, S.C. Witczak, M.R. Shaneyfelt, J.R. Schwank, A.H. Edwards, C.E. Hembree, T.R. Mattson, “Mechanisms for radiation dose-rate sensitivity of bipolar transistors”, IEEE Trans. Nucl. Sci., 2003, vol. NS-50, no.6, pp.1901–1909.

K.Kruckmeyer, L. McGee, B. Brown, D. Hughart, “Low dose rate test results of National Semiconductor´s ELDRS-free bipolar amplifier LM124 and comparators LM139 and LM193”, In Proceedings of the IEEE Radiation Effect Data Workshop Record, pp.110–117, 2008.

J. Boch, A. Michez, M. Rousselet, S. Dhombres, A.D. Touboul, J.-R. Vaille, L. Dusseau, E. Lorfevre, N. Charty, N. Sukhaseum, F. Saigne, “Dose rate switching technique on ELDRS-free bipolar devices”, IEEE Trans. Nucl. Sci., vol. 63, no. 4, pp. 2065–2071, August 2016.

V.S. Pershenkov, D.V. Savchenkov, A.S. Bakerenkov, V.N. Ulimov, A.Y. Nikiforov, A.I. Chumakov, A.A. Romanenko, “The conversion model of low dose rate effect in bipolar transistors”, In Proceedings of the RADECS Conference, 2009, pp. 286–393.

V.S. Pershenkov, D.V. Savchenkov, A.S. Bakerenkov, V.N. Ulimov, “Conversion model of enhanced low dose rate sensitivity in bipolar ICs”, Russian Microelectronics, vol. 39, no. 2, pp. 91–99, 2010.

V. S. Pershenkov, “Conversion Model of the Radiation-induced Interface-trap Buildup and its Hardness assurance applications”, Facta Universitatis, Series: Electronics and Energetics, vol. 28, no. 4, pp. 557–570, March 2015.

A. V.Sogoyan, S. V. Cherepko, V. S. Pershcnkov, V. I. Rogov, V. N. Ulinov, V. V. Emelianov, “Thermal- and Radiation-Induced Interface Traps in MOS Devices”, In Proceedings of the RADECS Conference, 1997, pp. 69–72.

A. V.Sogoyan, S. V. Cherepko, V. S. Pershenkov, “The hydrogenic-electron model of accumulation of surface states on the oxide-semiconductor interface under the effects of ionizing radiation”, Russian Microelectronics, vol. 43, no. 2, pp. 162–164, 2014.

F. B. McLean, “A Framework for Understanding Radiation-Induced Interface States in MOS SiO2 Structures,” IEEE Trans. Nucl. Sci., vol. NS-27, no.6, pp. 1651–1657, Dec. 1980.

S.K. Lai, “Interface trap generation in silicon dioxide when electrons are captured by trapped holes”, Journal of Applied Physics, vol. 54, pp. 2540–2546, 1983.

V. V. Emelianov, A. V. Sogoyan, O. V. Meshurov, V. N. Ulimov, V. S. Pershenkov, “Modeling the Field and Thermal Dependence of Radiation-Induced Charge Annealing in MOS Devices", IEEE Trans. Nucl. Sci., vol. 43, no.6, pp. 2572–2578, Dec. 1996.

K.L. Yip and W.B.Fowler, “Electronic structure,of E’ centers in SiO” Phys. Rev. B, vol. l1, no. 6, pp. 2427–2338, 1975.

E.P.Reilly and J.Roberston, “Theory of Defects in Vitreous Silicon Dioxide,” Phys. Rev. B, vo1. 27, no. 6, pp. 3780, 1981.

W.H.Flygare, Molecular Structure and Dynamics, Prentice-Hall Inc., Englewood Cliffs, NJ, 1978.

D.M. Fleetwood, “Radiation-induced charge neutralization and interface-trap buildup in metal-oxide-semiconductor devices”, Journal of Applied Physics, vol. 67, no. 1, pp. 580–583, 1990.

X.J. Chen, H.J. Barnaby, “The effect of radiation-induced interface traps on base current in gated bipolar test structures”, Solid-State Electronics, vol. 52, pp. 683–687, 2008.

W. Shoсkley, W.T. Read, “Statistics of recombination of holes and electrons”, Phys. Rev., vol. 87, p. 835, 1952.

R.N. Hall, “Electron-hole recombination in germanium”, Phys. Rev., vol. 87, p. 387, 1952.

A.S. Grove, Physics and technology of semiconductor devices, John Wiley & Sons, Inc., 1967.

S.M. Sze, Physics of semiconductor devices. New York, Willey, 1981.

G.I. Zebrev, A.S. Petrov, R. G. Useinov, R. S. Ikhsanov, V. N. Ulimov, V. S. Anashin, I. V. Elushov, M.G. Drosdetsky, A.M. Galimov, “Simulation of Bipolar Transistor Degradation at Various Dose Rates and Electrical Modes for High Dose Conditions”, IEEE Transactions on Nuclear Science, vol. 61, no. 4, pp. 1785–1790, 2014.

D. M. Fleetwood, “Total Ionizing Dose Effects in MOS and Low-Dose-Rate-Sensitive Linear-Bipolar Devices,” IEEE Trans. Nucl. Sci., vol. NS-60, no.3, pp. 1706–1730, June 2013.

A.S. Bakerenkov, V.V. Belyakov, V.S. Pershenkov, A.A. Romanenko, D.V. Savchenkov, V.V. Shurenkov, “Extracting the Fitting Parameters for the Conversion Model of Enhanced Low Dose Rate Sensitivity in Bipolar Devices”, Russian Microelectronics, vol. 42, pp. 48–52, 2013.


  • There are currently no refbacks.

ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626