Sobhan Abasian, Reza Sabbaghi-Nadooshan

DOI Number
First page
Last page


In this work, a GaAs-based quantum well solar cell with a 25-layer InAs/GaAs intermediate layer is simulated in Silvaco Atlas TCAD software. In order to reduce the recombination caused by the presence of the quantum layers and increase the absorption of photons, electron blocking layers (EBLs) and hole blocking layers (HBLs) have been added to the solar cell in an In0.5(Al0.7Ga0.3)0.5P semiconductor. The results show that the efficiency of the proposed solar cell increases 17.38% by obtaining impurity the thickness and doping of the EBL and HBL layers. It can be concluded that the use of the In0.5(Al0.7Ga 0.3)0.5P semiconductor with EBL and HBL layers decreases the open circuit voltage (Voc) caused in the quantum wells. The efficiency of the proposed solar cell with EBL and HBL layers was found to be 44.65%.


Electron-blocking Layers, hole-blocking Layers, InAs/GaAs, Quantum-well Solar Cell

Full Text:



K. W. J. Barnham and G. Duggan, “A new approach to high-efficiency multi-band-gap solar cells”, J. Appl. Phys., vol. 67, pp. 3490, 1990.

K. Barnham, B. Braun, J. Nelson, and M. Paxman, “Short-circuit current and energy efficiency enhancement in a low-dimensional structure photovoltaic device,” Appl. Phys. Lett., vol. 59, pp. 135–137, 1991.

M. Paxman, J. Nelson, B. Braun, J. Connolly, and K. W. J. Barnham, “Modeling the spectral response of the quantum well solar cell”, J. Appl. Phys., vol. 74, pp. 614, 1993.

B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, S. R. Forrest, “Organic Double Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonat)ruthenium(III) Exciton-Blocking Layers”, Adv. Mater., vol. 17, pp. 2714–2718, 2005.

Y. K. Kuo, T. H. Wang, J. Y. Chang, J. D. Chen, “Slightly-Doped Step-Like Electron-Blocking Layer in InGaN Light-Emitting Diodes”, IEEE Photonics Technol. Lett., vol. 24, no. 17, pp. 1506, 2012.

M. F. Ali, F. Hossain, “Effect of Bandgap of EBL on Efficiency of the p-n Homojunction Si Solar Cell from Numerical Analysis”, In Proceedings of the International Conference on Electrical & Electronic Engineering (ICEEE), 2015, pp. 245–248.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage”, Applied Physics Letters, vol. 96, no. 20, pp. 203507, 2010.

P. J. Carrington, A. S. Mahajumi, M. C. Wagener, J. R. Botha, Q. Zhuang, A. Krier, “Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells”, Physica B: Condensed Matter, vol. 407, no. 10, pp. 1493–1496, 2012.

W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure”, Solar Energy Materials & Solar Cells, vol. 105, pp. 237–241, 2012.

X. Yang, K. Wang, Y. Gu, H. Ni, X. Wang, T. Yang, Z. Wang, “Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping”, Solar Energy Materials & Solar Cells, vol. 113, pp. 144–147, 2013.

Y. Dai, S. Polly, S. Hellstroem, D. V. Forbes and S. M. Hubbard, “Electric Field Effect on Carrier Escape from InAs/GaAs Quantum Dots Solar cells”, In Proceedings of the IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014, pp. 3492–3497.

I. Ramiro, J. Villa, P. Lam, S. Hatch, J. Wu, E. Lopez, E. Antol´ın, H. Liu, A. Mart ,Wide-Bandgap InAs/InGaP Quantum-Dot Intermediate Band Solar Cells, IEEE Journal of Photovoltaics, vol. 5 , no. 3, pp. 840–845, 2015.

A. D. Utrilla, D. F. Reyes, J. M. Llorens, I. Artacho, T. Ben, D. González, Ž. Gačević, A. Kurtz, A. Guzman, A. Hierro, J. M. Ulloa, “Thin GaAsSb capping layers for improved performance of InAs/GaAs quantum dot solar cells”, Solar Energy Materials and Solar Cells, vol. 159, pp. 282–289, 2017.

S. Biswas and A. Sinha, “An analytical study of the minority carrier distribution and photocurrent of a p–i–n quantum dot solar cell based on the InAs/GaAs system”, Indian Journal of Physics, vol. 91, pp. 1197–1203, 2017

A. Imran, J. Jiang, D. Eric, M. N. Zahid, M. Yousaf, Z. H. Shah, “Optical properties of InAs/GaAs quantum dot superlattice structures”, Results in Physics, vol. 9, pp. 297–302, 2018.

A. Aissat, N. Harchouch, and J. P. Vilcot, “Optimization of the Temperature Effects on Structure InAs/GaAs QDSC”, In: Hajji B., Tina G., Ghoumid K., Rabhi A., Mellit A. (eds), In Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy. ICEERE 2018. Lecture Notes in Electrical Engineering, Vol. 519. Springer, Singapore, 2019.

E. Koletsios, GaAs/InAs multi quantum well solar cell, master of science in applied physics from the naval Postgraduate school, 2012.

K. J. Singh, S. K. Sarkar, “Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers”, Optical Quantum Electronics, vol. 43, pp. 1–21, 2012.

A. Martí, C. R. Stanley, and A. Luque. “Intermediate Band Solar Cells (IBSC) Using Nanotechnology”, chapter 17 in Nanostructured Materials for Solar Energy Conversion. (Elsevier B. V., 2006).

F. K. Rault, “Mathematical Modelling of the Refractive Index and Reflectivity of the Quantum Well Solar Cell”, chapter 4 in Nanostructured Materials for Solar Energy Conversion. (Elsevier B. V., 2006).

Ching-Hwa Ho, Ji-Han Li, and Yu-Shyan Lin, “Optical characterization of a GaAs/In0.5(AlxGa1-x)0.5P/GaAs heterostructure cavity by piezoreflectance spectroscopy”, Optics Express, vol. 15, no. 21, pp. 13886–13893, 2007.

I. Vurgaftman, J.R. Meyer, L.R. Rammohan, “Band parameters for IIIeV compound semiconductors and their alloys”, J. Appl. Phys., vol. 89, no. 11, pp. 5815, 2001.

SILVACO Data Systems Inc, Silvaco ATLAS User’s Manual, 2010.

H.Y. Lee, C.T. Lee, “The investigation for various treatments of InAlGaP Schottky diodes”, In Proceedings of the 8th International Conference on Electronic Materials, IUMRS-ICEM 23, 2002, pp. 99–102.

A. Badea, F. Dragan, L. Fara, and P. Sterian, “Quantum mechanical effects analysis of nanostructured solar cell models”, Renew. Energy Environ. Sustain., vol. 1, no. 3, pp. 1–5, 2016.

J. C. Rimada and L. Hernández, “Modelling of ideal AlGaAs quantum well solar cells”, Microelectronics Journal, vol. 32, no. 9, pp. 719–723, 2001.

G. Siddharth, V. Garg, B. S. Sengar, R. Bhardwaj, P. Kumar, S. Mukherjee, “Analytical Study of Performance Parameters of InGaN/GaN Multiple Quantum Well Solar Cell”, IEEE Transactions on Electron Devices, vol. 66, no. 8, pp. 3399–3404, 2019.

S. Abbasian, R. sabbaghi-Nadooshan, “Design and evaluation of ARC less InGaP/AlGaInP DJ solar cell”, Optik, Vol. 136, pp. 487-496, 2017

E. E. Perl, J. Simon, J. F. Geisz, W. Olavarria, M. Young, A. D. Daniel, J. Friedman, M. A. Steiner, “Development of High-Bandgap AlGaInP Solar Cells Grown by Organometallic Vapor-Phase Epitaxy”, IEEE Journal of Photovoltaics, vol. 6, no. 3, pp. 770–776, 2016.

X. Li, W. Zhang, J. Zhang, H. Lu, D. Zhou, L. Sun, K. Chen, “Study on 2.05 eV AIO.13GaInP sub-cell and its hetero-structure cells”, In Proceedings of the 40th Photovoltaic Specialist Conference (PVSC), 2014, pp. 479–481.

S. Abbasian, R. Sabbaghi-Nadooshan, “Introducing a novel high-efficiency ARC less heterojunction DJ solar cell”, Facta Universitatis, Series: Electronics and Energetics, vol. 31, no. 1, pp. 89–100, 2018.

S. M. SZE, M. K. LEE. Semiconductor Devices Physics and Technology,

J. P. Dutta, P. P. Nayak, G. P. Mishra, “Design and evaluation of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized double top BSF layer”, Optik, vol. 127, pp. 4156–4161, 2016.


  • There are currently no refbacks.

ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626