CHARACTERIZATION OF PTC EFFECT IN BATIO3-CERAMICS AS A SPECIAL PHASE TRANSITION – FRACTAL APPROACH

Zoran Bohumil Vosika, Vojislav V Mitić, Vesna Paunović, Jelena Manojlović, Goran Lazović

DOI Number
https://doi.org/10.2298/FUEE2104499V
First page
499
Last page
510

Abstract


The applications of BaTiO3-ceramics are very important and constantly increasing nowadays. In that sense, we analyzed some phenomena related to inter-granular effects. We used experimental data based on Murata powders and processing technology. Our original contribution to Heywang-Jonker-Daniels inter-granular capacity model is based on thermodynamic fractal analysis applied on phase transition in ceramic structures. In this case, PTCR effect has a diffuse first-order phase transition character in a modified Landau theory-fractal approach. Its basic properties are considered. This is an original contribution as a bridge between theoretical aspects of BaTiO3-ceramics and experimental results.


Keywords

PTCR effect, BaTiO3-ceramics, Heywang-Jonker-Daneils model, fractal correction, phase transition

Full Text:

PDF

References


K.C. Kao, Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes. Elsevier Academic Press, London, 2004.

Y. L. Chen and S. Yang, "PTCR effect in donor doped barium titanate: Review of compositions, microstructures, processing and properties", Adv. Appl. Ceram., vol 110, no. 5, pp. 257-269, Jan. 2011.

S. H. Cho, "Theoretical aspects of PTC thermistors", J. Korean Ceram. Soc., vol. 43, no. 11, pp. 673-679, Oct. 2006.

F. Duan and J. Guojun, Introduction to Condensed Matter Physics, Volume 1. World Scientific Publishing Co. Pte. Ltd. Singapore, 2005.

J. Nowotny and M. Rekas, "Positive temperature coefficient of resistivity for BaTiO3-based materials", Ceram. Int., vol. 17, no. 4, pp. 227-241, 1991.

V. V. Mitić, Structure and electrical properties of BaTiO3 – ceramics. Belgrade, Serbia, Zadužbina Endowment Andrejević, 2001.

W. Heywang, "Bariumtitanat als sperrschichthalbleiter", Solid-State Electron., vol. 3, no. 1, pp. 51-58, July 1961.

H. Heywang, "Resistivity anomaly in doped barium titanate", J. Am. Ceram. Soc., vol. 47, no. 10, pp. 484–490, Oct. 1964.

G. H. Jonker, "Some aspects of semiconducting barium titanate", Solid-State Electron., vol. 7, no. 12, pp. 895–903, Dec. 1964.

J. Daniels, K.H. Hardtl and R. Wernicke, "PTC effect of barium titanate", Philips Tech. Rev., vol. 38, no. 3, pp. 73-82, 1979.

V. V. Mitić, V. Paunović and Lj. Kocić, "Fractal Approach to BaTiO3 –Ceramics MicroImpedances", Ceramic Int., vol. 41, no. 5, pp. 6566-6574, 2005.

V.V. Mitić, V. Paunović, G. Lazović, Lj. Kocić and B. Vlahović, "Clausius–Mossotti relation fractal modification", Ferroelectrics, vol. 536, no. 1, pp. 60-76, 2018.

H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, 1971.

S. R. A. Salinas, Introduction to statistical physics. Springer-Verlag, New York, 2010.

F. Schwabl, Statistical Mechanics. Second Edition. Springer-Verlag Berlin Heidelberg, 2006.

L. E. Reichl, A Modern Course in Statistical Physics. 4th revised and updated edition. Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 2016.

F. Gebhard, The Mott Metal-Insulator Transition. Springer, Berlin Heidelberg, 2010.

B. Mandelbrot, The Fractal Geometry of Nature. 3rd ed. W.H. Freeman, San Francisco, 1983.

M. Barnsley, Fractals Everywhere. Academic Press, San Diego, CA, 1988.

J. F. Gouyet, Physics and Fractal Structures. Springer, Berlin, 1996.

Z. B. Vosika, V. V. Mitić, G. Lazović, V. Paunović and Lj. Kocić, "Meso-kinetics of one-time relaxation electrical processes in BaTiO3 ceramics—modified Boltzmann-Poisson model", Ferroelectrics, vol. 531, no. 1, pp. 38–50, Nov. 2018.

K. Uchino and S. Namura, "Critical Exponents of the Dielectric Constants in Diffuse-phase Transition Crystals", Ferroelectrics Letters, vol. 44, pp. 55–61, May 1982.

R. B. Darling, S. Iwanaga, "Structure, properties, and MEMS and microelectronic applications of vanadium oxides", Sadhana 34, vol. 531, Oct. 2009.

P. Limelette, A. Georges, D. P. Jérome, P. Wzietek, P. Metcalf and J. M. Honig, "Universality and Critical Behavior at the Mott Transition", Science, vol. 302, no. 5642, pp. 89–92, Oct. 2003.

J. Wang, P.P. Wu, X.Q Ma and L.Q. Chen, "Temperature-pressure phase diagram and ferroelectric properties of BaTiO3 single crystal based on a modified Landau potential", J. Appl. Phys., vol. 108, p. 114105, Dec. 2010.

L. Tu and A.A. Ilhan, "Hierarchical Structure−Ferroelectricity Relationships of Barium Titanate Particle", Crystal Growth & Design, vol. 1, no. 5, Aug. 2001.

M. Viviani, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Testino, P. Nanni and D. Vladikova, "Analysis of conductivity and PTCR effect in Er-doped BaTiO3 ceramics", J. Eur. Ceram. Soc., vol. 24, no. 6, 2004.

M. Suzuki, "Phase transitions and fractals", Prog. Theor. Phys., vol. 69. no. 1, Jan. 1983.

P. Lévy, "Random functions: General theory with special references to Laplacian random functions", University of California Publications in Statistics, vol. 1, pp. 331–390, 1953.

V. V. Mitić, G. M. Lazović, J. Ž. Manojlović, W.-C. Huang, M. M. Stojiljković, H. Fecht and B. Vlahović, "Entropy and fractal nature", Thermal Science, vol. 24, no. 3B, pp. 2203–2212, 2020.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626