FIRST PRINCIPLE INSIGHT INTO Co-DOPED MoS2 FOR SENSING NH3 AND CH4

Bibek Chettri, Abinash Thapa, Sanat Kumar Das, Pronita Chettri, Bikash Sharma

DOI Number
https://doi.org/10.2298/FUEE2201043C
First page
043
Last page
059

Abstract


In this work we present the atomistic computational study of the adsorption properties of Co doped MoS2 adsorbed ammonia (NH3) and methane (CH4). The adsorption distance, adsorption energy (Ead), charge transfer (Qt), bandgap, Density of States (DOS), Projected Density of States (PDOS), transport properties, sensitivity and recovery time have been reported. The diffusion property of the system was calculated using Nudge Elastic Band (NEB) method. The calculated results depict that after suitable doping of Co on MoS2 monolayer decreases the resistivity of the system and makes it more suitable for application as a sensor.  After adsorbing NH3 and CH4, Co doped MoS2 bandgap, DOS and PDOS become more enhanced. The adsorption energy calculated for NH3 and CH4 adsorbed Co doped MoS2 are -0.9 eV and -1.4 eV. The reaction is exothermic and spontaneous. The I-V curve for Co doped MoS2 for CH4 and NH3 adsorption shows a linear increase in current up to 1.4 V and 2 V, respectively, then a rapid decline in current after increasing a few volts. The Co doped MoS2 based sensor has a better relative resistance state, indicating that it can be employed as a sensor. The sensitivity for CH4 and NH3 were 124 % and 360.5 %, respectively, at 2 V. With a recovery time of 0.01s, the NH3 system is the fastest. In a high-temperature condition/environment, the Co doped MoS2 monolayer has the potential to adsorb NH3 and CH4 gas molecules. According to NEB, CH4 gas molecules on Co doped MoS2 has the lowest energy barrier as compared to NH3 gas molecules. Our results indicate that adsorbing NH3 and CH4 molecules in the interlayer is an effective method for producing Co doped MoS2 monolayers for use as spintronics sensor materials.


Keywords

Density Functional Theory, gas sensor, adsorption energy, TMD

Full Text:

PDF

References


P. Karki, B. Chettri, A. Thapa, P. Chettri and B. Sharma, "First Principle Study of MoS2 adsorbed Transition Metal for Sensing NH3 and CH4", In Proceedings of the Devices for Integrated Circuit (DevIC), 2021, pp. 659–661.

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, "Semiconducting metal oxides as sensors for environmentally hazardous gases", Sens. Actuators B: Chem., vol. 160, no. 1, pp. 580–591, Dec. 2011.

B. Tian, T. Huang, J. Guo, H. Shu, Y. Wang and J. Dai, "Gas adsorption on the pristine monolayer GeP3 : A first-principles calculation", Vacuum, vol. 164, pp. 181–185, June 2019.

R. Cao, B. Zhou, C. Jia, X. Zhang and Z. Jiang, "Theoretical study of the NO, NO2, CO, SO2, and NH3 adsorptions on multi-diameter single-wall MoS2 nanotube", J. Phys. D. Appl. Phys., vol. 49, no. 4, p. 045106, Dec. 2015.

T. Abbasi and S.A. Abbasi, "“Renewable” hydrogen: Prospects and challenges", Renew. Sustain. Energy Rev., vol. 15, no. 6, pp. 3034–3040, Aug. 2011.

F. Barbir, "Fuel cells and hydrogen economy", Chem. Ind. Chem. Eng. Q., vol. 11, no. 3, pp. 105–113, June 2005.

X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z. S. Liu, H. Wang and J. Shen, "A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation", J. Power Sources, vol. 165, no. 2, pp. 739–756, Mar. 2007.

H. Luo, Y. Cao, J. Zhou, J. Feng, J. Cao and H. Guo, "Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: A first-principles study", Chem. Phys. Lett., vol. 643, pp. 27–33, Jan. 2016.

D. J. Late, T. Doneux and M. Bougouma, "Single-layer MoSe2 based NH3 gas sensor", Appl. Phys. Lett., vol. 105, p. 233103, Dec. 2014.

N. Yamazoe, "Toward innovations of gas sensor technology", Sensors Actuators, B Chem., vol. 108, pp. 2–14, July 2005.

A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science, vol. 287, no. 5459, pp. 1801–1804, Mar. 2000.

K. Kalantar-Zadeh and B. Fry, Nanotechnology-enabled sensors, Springer, 2008.

Z. Huang, X. Peng, H. Yang, C. He, L. Xue, G. Hao, C. Zhang, W. Liu, X. Qi and J. Zhong, "The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer", RSC Adv., vol. 3, pp. 12939–12944, June 2013.

Y. Zhang, W. Zeng and Y. Li, "The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties", J. Alloys Compd., vol. 749, pp. 355–362, June 2018.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.Y. Chiu and H. Zhao, "Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide", Phys. Rev. B - Condens. Matter Mater. Phys., vol. 86, p. 045406, July 2012.

S. Cui, Z. Wen, X. Huang, J. Chang and J. Chen, "Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air", Small, vol. 11, no. 19, pp. 2305–2313, May 2015.

Q. Zhou, C. Hong, Y. Yao, S. Hussain, L. Xu, Q. Zhang, Y. Gui and M. Wang, "Hierarchically MoS2 nanospheres assembled from nanosheets for superior CO gas-sensing properties", Mater. Res. Bull., vol. 101, pp. 132–139, May 2018.

D. Zhang, J. Wu, P. Li and Y. Cao, "Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: An experimental and density functional theory investigation", J. Mater. Chem. A, vol. 5, pp. 20666–20677, Sep. 2017.

D. J. Late, Y. K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid and C. N. R. Rao, "Sensing behavior of atomically thin-layered MoS2 transistors", ACS Nano, vol. 7, no. 6, pp. 4879–4891, May 2013.

J. Wang, Q. Zhou, L. Xu, X. Gao and W. Zeng, "Gas sensing mechanism of dissolved gases in transformer oil on Ag–MoS2 monolayer: A DFT study", Phys. E Low-Dimensional Syst. Nanostructures, vol. 118, p. 113947, Apr. 2020.

A. M. Hu, L. L. Wang, W. Z. Xiao, G. Xiao and Q. Y. Rong, "Electronic structures and magnetic properties in nonmetallic element substituted MoS2 monolayer", Comput. Mater. Sci., vol. 107, pp. 72–78, Sep. 2015.

D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Y. Tang, Z. Lu and Z. Yang, "Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals", Appl. Surf. Sci., vol. 364, pp. 181–189, Feb. 2016.

L. Zhang, T. Liu, T. Li and S. Hussain, "A study on monolayer MoS2 doping at the S site via the first principle calculations", Phys. E Low-Dimensional Syst. Nanostructures, vol. 94, pp. 47–52, Oct. 2017.

H. Cui, X. Zhang, G. Zhang and J. Tang, "Pd-doped MoS2 monolayer: A promising candidate for DGA in transformer oil based on DFT method", Appl. Surf. Sci., vol. 470, pp. 1035–1042, Mar. 2019.

X. Gui, Q. Zhou, S. Peng, L. Xu and W. Zeng, "Adsorption behavior of Rh-doped MoS2 monolayer towards SO2, SOF2, SO2F2 based on DFT study", Phys. E Low-Dimensional Syst. Nanostructures, vol. 122, p. 114224, Aug. 2020.

G. Qian, Q. Peng, D. Zou, S. Wang, B. Yan and Q. Zhou, "First-Principles Insight Into Au-Doped MoS2 for Sensing C2H6 and C2H4," Front. Mater., vol. 7, p. 22., Feb. 2020.

Z. Xiao, W. Wu, X. Wu and Y. Zhang, "Adsorption of NO2 on monolayer MoS2 doped with Fe, Co, and Ni, Cu: A computational investigation", Chem. Phys. Lett., vol. 755, p. 137768, Sep. 2020.

E. Salih and A.I. Ayesh, "First principle study of transition metals codoped MoS2 as a gas sensor for the detection of NO and NO2 gases", Phys. E Low-Dimensional Syst. Nanostructures, vol. 131, p. 114736, July 2021.

M. W. Iqbal, E. Elahi, A. Amin, G. Hussain and S. Aftab, "Chemical doping of transition metal dichalcogenides (TMDCs) based field effect transistors: A review", Superlattices Microstruct., vol. 137, p. 106350, Jan. 2020.

B. Chettri, P. K. Patra, Lalmuanchhana, Lalhriatzuala, S. Verma, B. K. Rao, M. L. Verma, V. Thakur, N. Kumar, N. N. Hieu and D.P. Rai, "Induced magnetic states upon electron–hole injection at B and N sites of hexagonal boron nitride bilayer: A density functional theory study", Int. J. Quantum Chem., vol. 121, no. 16, p. e26680, Aug. 2021.

Y. Wang, X. Shang, X. Wang, J. Tong and J. Xu, "Density functional theory calculations of NO molecule adsorption on monolayer MoS2 doped by Fe atom", Mod. Phys. Lett. B, vol. 29, no. 27, p. 1550160, Oct. 2015.

Y. H. Zhang, J. L. Chen, L. J. Yue, H. L. Zhang and F. Li, "Tuning CO sensing properties and magnetism of MoS2 monolayer through anchoring transition metal dopants", Comput. Theor. Chem., vol. 1104, pp. 12–17, Mar. 2017.

L. Xu, Y. Gui, W. Li, Q. Li and X. Chen, "Gas-sensing properties of Ptn-doped WSe2 to SF6 decomposition products", J. Ind. Eng. Chem., vol. 97, pp. 452–459, May 2021.

P. Sharma, M. Lepcha, B. Chettri, A. Thapa, P. Chettri and B. Sharma, "First Principle Study of MoS2 adsorbed Transition Metal for Sensing Urea and Methanol" , In Proceedings of the Devices for Integrated Circuit (DevIC), 2021, pp. 655–658.

T. Li, Y. Gui, W. Zhao, C. Tang and X. Dong, "Palladium modified MoS2 monolayer for adsorption and scavenging of SF6 decomposition products: A DFT study", Phys. E Low-Dimensional Syst. Nanostructures, vol. 123, p. 114178, Sep. 2020.

S. Smidstrup, D. Stradi, J. Wellendorff, P. A. Khomyakov, U. G. Vej-Hansen, M.-E. Lee, T. Ghosh, E. Jónsson, H. Jónsson and K. Stokbro, "First-principles Green’s-function method for surface calculations: A pseudopotential localized basis set approach", Phys. Rev. B, vol. 96, p. 195309, Nov. 2017.

S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, others, "QuantumATK: An integrated platform of electronic and atomic-scale modelling tools", J. Phys Condens. Matter., vol. 32, p. 15901, 2020.

J. P. Perdew, K. Burke and M. Ernzerhof, "Generalized gradient approximation made simple", Phys. Rev. Lett., vol. 77, p. 1396, Oct. 1996.

J. P. Perdew, K. Burke and M. Ernzerhof, "Perdew, Burke, and Ernzerhof Reply", Phys. Rev. Lett., vol. 80, p. 891, Jan. 1998.

N. Troullier and J. L. Martins, "Efficient pseudopotentials for plane-wave calculations", Phys. Rev. B, vol. 43, no. 3, pp. 1993–2006, Jan. 1991.

A. Sengupta, "On the junction physics of Schottky contact of (10, 10) MX2 (MoS2, WS2) nanotube and (10, 10) carbon nanotube (CNT): an atomistic study", Appl. Phys. A Mater. Sci. Process., vol. 123, p. 227, Mar. 2017.

H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations", Phys. Rev. B, vol. 13, p. 5188, June 1976.

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom and K. Stokbro, "ATK-ForceField: a new generation molecular dynamics software package", Model. Simul. Mater. Sci. Eng., vol. 25, p. 85007, Oct. 2017.

P. Pulay, "Convergence acceleration of iterative sequences. the case of scf iteration", Chem. Phys. Lett., vol. 73, no. 2, pp. 393–398, July 1980.

A. Ramasubramaniam and D. Naveh, "Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor", Phys. Rev. B - Condens. Matter Mater. Phys., vol. 87, p. 195201, May 2013.

P. Wu, N. Yin, P. Li, W. Cheng and M. Huang, "The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, Cu, Ag and Au) on a MoS2 monolayer: A first-principles study", Phys. Chem. Chem. Phys., vol. 19, pp. 20713–20722, Aug. 2017.

J. W. Jiang, H. S. Park and T. Rabczuk, "Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity", J. Appl. Phys., vol. 114, p. 064307, Aug. 2013.

Y. Li, X. Zhang, D. Chen, S. Xiao and J. Tang, "Adsorption behavior of COF2 and CF4 gas on the MoS2 monolayer doped with Ni: A first-principles study", Appl. Surf. Sci., vol. 443, pp. 274–279, June 2018.

Y. Chen, X. Wang, C. Shi, L. Li, H. Qin and J. Hu, "Sensing mechanism of SnO2(1 1 0) surface to H2: Density functional theory calculations", Sensors Actuators, B Chem., vol. 220, pp. 279–287, Dec. 2015.

D. Stradi, U. Martinez, A. Blom, M. Brandbyge and K. Stokbro, "General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green’s function", Phys. Rev. B, vol. 93, p. 155302, Apr. 2016.

M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor and K. Stokbro, "Density-functional method for nonequilibrium electron transport", Phys. Rev. B, vol. 65, p. 165401, Mar. 2002.

S. Datta and H. van Houten, "Electronic Transport in Mesoscopic Systems", Phys. Today, vol. 49, no. 5, p. 70, May 1996.

S. Datta, "Nanoscale device modeling: the Green’s function method", Superlattices Microstruct., vol. 28, no. 4, pp. 253–278, Oct. 2000.

P. Srivastava, V. Sharma and N. K. Jaiswal, "Adsorption of COCl gas molecule on armchair boron nitride nanoribbons for nano sensor applications", Microelectron. Eng., vol. 146, pp. 62–67, Oct. 2015.

J. Prasongkit, V. Shukla, A. Grigoriev, R. Ahuja, V. Amornkitbamrung, "Ultrahigh-sensitive gas sensors based on doped phosphorene: A first-principles investigation", Appl. Surf. Sci., vol. 497, p. 143660, Dec. 2019.

Y. H. Zhang, Y. Bin Chen, K. G. Zhou, C. H. Liu, J. Zeng, H. L. Zhang and Y. Peng, "Improving gas sensing properties of graphene by introducing dopants and defects: A first-principles study", Nanotechnol., vol. 20, no. 18, p. 185504, Apr. 2009.

S. Peng, K. Cho, P. Qi and H. Dai, "Ab initio study of CNT NO2 gas sensor", Chem. Phys. Lett., vol. 387, pp. 271–276, Apr. 2004.

G. Henkelman, B. P. Uberuaga and H. Jónsson, "Climbing image nudged elastic band method for finding saddle points and minimum energy paths", J. Chem. Phys., vol. 113, p. 9901, Nov. 2000.

G. Henkelman and H. Jónsson, "Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points", J. Chem. Phys., vol. 113, p. 9978, Nov. 2000.

J. Wang, Q. Zhou, Z. Lu, Y. Gui and W. Zeng, "Adsorption of H2O molecule on TM (Au, Ag)doped-MoS2 monolayer: A first-principles study", Phys. E Low-Dimensional Syst. Nanostructures, vol. 113, pp. 72–78, Sep. 2019.

S. Ahmad and S. Mukherjee, "A Comparative Study of Electronic Properties of Bulk MoS2 and Its Monolayer Using DFT Technique: Application of Mechanical Strain on MoS2 Monolayer", Graphene, vol. 3, no. 4, pp. 52–59, Oct. 2014.

A. Ghosh and S. B. Majumder, "Modeling the sensing characteristics of chemi-resistive thin film semi-conducting gas sensors", Phys. Chem. Chem. Phys., vol. 19, pp. 23431–23443, Sep. 2017.

H. Wang, G. Gao, G. Wu, H. Zhao, W. Qi, K. Chen, W. Zhang and Y. Li, "Fast hydrogen diffusion induced by hydrogen pre-split for gasochromic based optical hydrogen sensors", Int. J. Hydrogen Energy, vol. 44, no. 29, pp. 15665–15676, June 2019.

Y. Qiao, J. Wu, X. Cheng, Y. Pang, Z. Lu, X. Lou, Q. Li, J. Zhao, S. Yang and Y. Liu, "Construction of robust coupling interface between MoS2 and nitrogen doped graphene for high performance sodium ion batteries", J. Energy Chem., vol. 48, pp. 435–442, Sep. 2020.

S. Mukherjee, A. Banwait, S. Grixti, N. Koratkar and C. V. Singh, "Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study", ACS Appl. Mater. Interfaces, vol. 10, no. 6, pp. 5373–5384, Jan. 2018.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626