RADIUS CONSTANTS FOR A CLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH A MULTIPLIER LINEAR OPERATOR

Poonam Sharma and Ankita *

Abstract

The purpose of this paper is to find radius constants for a Janowski type class $H_{k, \mu}^{m}(\lambda, A, B)$ involving a multiplier linear operator for functions f satisfying certain conditions on its coefficients. The sharpness of the results are verified. Some consequent results are also mentioned.

Keywords: Univalent functions, subclasses of univalent functions, multiplier operator, subordination, coefficient inequality, radius constant.

1. Introduction

Let \mathcal{A} denotes a class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z:|z|<1\}$. A subclass of univalent functions $f \in \mathcal{A}$ is denoted by \mathcal{S}. Bieberbach conjectured that a function $f \in \mathcal{S}$ of the form (1.1) satisfies the coefficient condition: $\left|a_{n}\right| \leq n(n \geq 2)$ which was proved by de Branges [4]. But it was observed that this coefficient condition is not sufficient for the functions f to be in the class \mathcal{S}. For example, functions

$$
f_{1}(z)=z+2 z^{2}, f_{2}(z)=2 z-\frac{z}{(1-z)^{2}}
$$

satisfy coefficient condition $\left|a_{n}\right| \leq n$ but their derivatives vanish inside \mathbb{U}, hence, the functions f_{1} and f_{2} are not in the class \mathcal{S}. Thus, we needed to find the least upper bound $r(f)$ of $r \in(0,1)$ such that $f \in \mathcal{A}$ satisfying the condition $\left|a_{n}\right| \leq n$ be univalent in $\mathbb{U}_{r}=\{z:|z|<r\}$ and is called the radius of univalence or the radius constant for $f \in \mathcal{S}$ or \mathcal{S} - radius. Gavrilov [10] showed that radius of univalence

Received March 24, 2015.; Accepted April 08, 2015.
2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C80
*The author was supported by SRF of CSIR, New Delhi India
for functions $f \in \mathcal{A}$ of the form (1.1) satisfying $\left|a_{n}\right| \leq n$, is the real root $r_{0}=0.164$ (approx.) of the equation $2(1-r)^{3}-(1+r)=0$ and the result is sharp for the function f_{2}. Gavrilov also obtained the radius of univalence of functions $f \in \mathcal{A}$ satisfying another inequality $\left|a_{n}\right| \leq M(M>0, n \geq 2)$. Landau [14] obtained the radius of univalence for functions $f \in \mathcal{A}$ satisfying $|f(z)| \leq M$. Various subclasses of \mathcal{S} have been defined and studied so far, well known out of which are the classes of starlike and convex functions, denoted, respectively, by $\mathcal{S T}$ and $C \mathcal{V}$ (see Duren [7]). Yamashita [28] showed that the radius of univalence obtained by Gavrilov is same as the radius of starlikeness for functions $f \in \mathcal{A}$ satisfying $\left|a_{n}\right| \leq n$ or $\left|a_{n}\right| \leq M$. Yamashita [28] also determined the radius of convexity, for functions $f \in \mathcal{A}$ satisfying $\left|a_{n}\right| \leq n$, which is the real root $r_{0}=0.090$ of the equation $2(1-r)^{4}-\left(1+4 r+r^{2}\right)=0$, while the radius of convexity for functions $f \in \mathcal{A}$ satisfying $\left|a_{n}\right| \leq M$ is the real root of $(M+1)(1-r)^{3}-M(1+r)=0$.

The second coefficient a_{2} of $f \in \mathcal{A}$ given by (1.1), determines some important properties such as growth and distortion estimates of the function f. By fixing the second coefficient, let \mathcal{A}_{b} denotes a subclass of the class \mathcal{A} whose members are of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(\left|a_{2}\right|=2 b, 0 \leq b \leq 1\right)
$$

Several authors have investigated various properties of univalent functions and its subclasses by fixing the second coefficient; for detail see $[1,2,11,15,16,23,26]$. In [23], Ravichandran obtained the sharp radii of starlikeness and convexity of order $\alpha(0 \leq \alpha<1)$ for functions $f \in \mathcal{A}_{b}$ satisfying the condition $\left|a_{n}\right| \leq n$ or $\left|a_{n}\right| \leq M$ or $\left|a_{n}\right| \leq M / n$ for $n \geq 3$. Further, in [16], radius constants are obtained for functions $f \in \mathcal{A}_{b}$ satisfying the condition $\left|a_{n}\right| \leq c n+d(c, d \geq 0)$ or $\left|a_{n}\right| \leq c / n(c>0)$ for $n \geq 3$.

Let f and g be analytic in \mathbb{U}. Then we say f is subordinate to g, written $f(z)<g(z)(z \in \mathbb{U})$, if there is an analytic function w with $w(0)=0$ and $|w(z)|<1$, such that $f(z)=g(w(z))$. In particular, if g is univalent in \mathbb{U}, then f is subordinate to g provided $f(0)=g(0)$ and $f(\mathbb{U}) \subseteq g(\mathbb{U})$. The concept of subordination can be found in [17]. Involving subordination, a brief history for various subclasses of \mathcal{S} may be found in [1].

In geometric function theory, various linear operators, associated with some geometric properties of the image domain are studied. For the purpose of this paper, we consider a multiplier linear operator $\mathcal{J}_{k, \mu}^{m}: \mathcal{A} \rightarrow \mathcal{A}$, defined recently in [21] (see also [22], [25]), for $m \in \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ and for $\mu>-1, k>0$, by

$$
\left\{\begin{align*}
\mathcal{J}_{k, \mu}^{m} f(z) & =f(z), & m=0 \tag{1.2}\\
\mathcal{J}_{k, \mu}^{m} f(z) & =\frac{\mu+1}{k} z^{1-\frac{\mu+1}{k}} \int_{0}^{z} t^{\frac{\mu+1}{k}-2} \mathcal{J}_{k, \mu}^{m+1} f(t) \mathrm{d} t, & m \in \mathbb{Z}^{-}=\{-1,-2, \ldots\} \\
\mathcal{J}_{k, \mu}^{m} f(z) & =\frac{k}{\mu+1} z^{2-\frac{\mu+1}{k}} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(z^{\frac{\mu+1}{k}-1} \mathcal{J}_{k, \mu}^{m-1} f(z)\right), & m \in \mathbb{Z}^{+}=\{1,2, \ldots\}
\end{align*}\right.
$$

The series representation of $\mathcal{J}_{k, \mu}^{m} f(z)$ for $f(z)$ of the form (1.1) is given by

$$
\begin{equation*}
\mathcal{J}_{k, \mu}^{m} f(z)=z+\sum_{n=2}^{\infty}\left(1+\frac{k(n-1)}{\mu+1}\right)^{m} a_{n} z^{n} \tag{1.3}
\end{equation*}
$$

The multiplier operator $\mathcal{J}_{k, \mu}^{m}$ generalizes several previously studied operators in various papers some of which are as follows:
(i) $\mathcal{J}_{k, 0}^{m}=D_{k}^{m}\left(m \in \mathbb{N}_{0}=\{0,1,2, \ldots\}\right)[18]$
(ii) $\mathcal{J}_{1,0}^{m}=D^{m}\left(m \in \mathbb{N}_{0}\right)$ [24]
(iii) $\mathcal{J}_{1,1}^{m}=\mathcal{D}^{m}$ [27]
(iv) $\mathcal{J}_{1, \mu}^{m}=I_{\mu}^{m}\left(m \in \mathbb{N}_{0}, \mu \geq 0\right)[5,6]$
(v) $\mathcal{J}_{k, 0}^{-n}=\mathcal{I}_{k}^{-n}\left(n \in \mathbb{N}_{0}, k>0\right)[3,20]$
(vi) $\mathcal{J}_{1, a}^{-n}=L_{a+1}^{n}\left(n \in \mathbb{N}_{0}, a \geq 0\right)[13]$
(vii) $\mathcal{J}_{1,1}^{-n}=I^{-n}\left(n \in \mathbb{N}_{0}\right)$ [8]
(viii) $\mathcal{J}_{1,0}^{-n} f(z)=\mathcal{I}^{-n}\left(n \in \mathbb{N}_{0}, \lambda>0\right)$ [24]

Involving the operator $\mathcal{J}_{k, \mu^{\prime}}^{m}$, we define a Janowski type class $H_{k, \mu}^{m}(\lambda, A, B)$ as follows:

Definition 1.1. A function $f \in \mathcal{A}$ is said to be in class $H_{k, \mu}^{m}(\lambda, A, B)$, if it satisfies for $\lambda \geq 0,-1 \leq B<A \leq 1$, a subordination:

$$
\begin{equation*}
\frac{(1-\lambda) \mathcal{J}_{k, \mu}^{m+1} f(z)+\lambda z\left(\mathcal{J}_{k, \mu}^{m+1} f(z)\right)^{\prime}}{\mathcal{J}_{k, \mu}^{m} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

Note that on giving appropriate values to the parameters involved in the aforementioned class $H_{k, \mu}^{m}(\lambda, A, B)$, we find several previously defined classes. Some of these are as follows:
(i) $H_{1,0}^{0}(0, A, B)=\mathcal{S T}[A, B], H_{1,0}^{1}(0, A, B)=C \mathcal{V}[A, B]$ studied by Janowski [12].
(ii) $H_{1,0}^{0}(\alpha, 1-2 \beta,-1)=\mathcal{L}(\alpha, \beta)(\alpha \geq 0, \beta \in \mathbb{R} \backslash\{1\})$ studied by Nargesi et al. [16] ([19]).
(iii) $H_{1,0}^{0}(0,1-\alpha, 0), H_{1,0}^{1}(0,1-\alpha, 0)(0 \leq \alpha<1)$ studied by Ravichandran [23].

Denote $H_{k, \mu}^{m}(\lambda, 1-2 \beta,-1)=H_{k, \mu}^{m}(\lambda, \beta)(0 \leq \beta<1)$ and $H_{k, \mu}^{m}(\lambda, 0)=H_{k, \mu}^{m}(\lambda)$. Functions in the class $H_{k, \mu}^{m}(\lambda, \beta)$ satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(1-\lambda) \mathcal{J}_{k, \mu}^{m+1} f(z)+\lambda z\left(\mathcal{J}_{k, \mu}^{m+1} f(z)\right)^{\prime}}{\mathcal{J}_{k, \mu}^{m} f(z)}\right\}>\beta(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

Since, for $-1 \leq D \leq B<A \leq C \leq(1-2 \beta) \leq 1$,

$$
\frac{1+A z}{1+B z}<\frac{1+C z}{1+D z}<\frac{1+(1-2 \beta) z}{1-z}<\frac{1+z}{1-z}(0 \leq \beta<1 ; z \in \mathbb{U})
$$

we observe that

$$
H_{k, \mu}^{m}(\lambda, A, B) \subset H_{k, \mu}^{m}(\lambda, C, D)
$$

and

$$
H_{k, \mu}^{m}(\lambda, A, B) \subset H_{k, \mu}^{m}(\lambda, \beta) \subset H_{k, \mu}^{m}(\lambda)
$$

But the reverse inclusion is true in some disk \mathbb{U}_{r}. According to [9], we have following inclusions:
(i) $H_{k, \mu}^{m}(\lambda, C, D) \subset H_{k, \mu}^{m}(\lambda, A, B)$ in $\mathbb{U}_{r_{1}}$, where $r_{1}=\min \left(\frac{A-B}{C-D-|A D-B C|}, 1\right)$.
(ii) $H_{k, \mu}^{m}(\lambda, \beta) \subset H_{k, \mu}^{m}(\lambda, A, B)$ in $\mathbb{U}_{r_{2}}$, where $r_{2}=\min \left(\frac{A-B}{2(1-\beta)-|A+B(1-2 \beta)|}, 1\right)$.
(iii) $H_{k, \mu}^{m}(\lambda) \subset H_{k, \mu}^{m}(\lambda, A, B)$ in $\mathbb{U}_{r_{3}}$, where $r_{3}=\min \left(\frac{A-B}{2-|A+B|}, 1\right)$.

We note that the functions belonging to a class, satisfy certain coefficient condition, for example, if $f \in \mathcal{A}$ of the form (1.1) is convex (univalent) in \mathbb{U}, then $\left|a_{n}\right| \leq n(n \geq 2)$ and if it is starlike in \mathbb{U}, then $\left|a_{n}\right| \leq 1(n \geq 2)$. Also, if f satisfies $|f(z)| \leq M(M>0 ; z \in \mathbb{U})$, then $\left|a_{n}\right| \leq M(n \geq 2)$, and if $\operatorname{Re}\left(f^{\prime}(z)\right)>0$ in \mathbb{U}, then $\left|a_{n}\right| \leq 2 / n(n \geq 2)$.

The purpose of this paper is to find results on $H_{k, \mu}^{m}(\lambda, A, B)$ - radius for the functions satisfying certain conditions on the coefficients $a_{n}(n \geq 2)$, which presumingly arise for the functions belonging to various classes. Motivated with the work [16] and [23], for $f \in \mathcal{A}$ of the form (1.1), satisfying certain conditions on the coefficients $a_{n}(n \geq 2), H_{k, \mu}^{m}(\lambda, A, B)-$ radius is obtained by using the sufficient coefficient condition for the class $H_{k, \mu}^{m}(\lambda, A, B)$ which is also obtained in this paper. The sharpness of the radii results are verified. Some consequent results are also mentioned.

2. Coefficient Inequality

Theorem 2.1. Let $\mu>-1, k>0, \lambda \geq 0$ and let $-1 \leq B<0, B<A \leq 1$. If $f \in \mathcal{A}$ of the form (1.1) satisfies the inequality

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[A-1+(1-B)(1-\lambda+\lambda n)\left(1+\frac{k(n-1)}{\mu+1}\right)\right] \theta_{k, \mu}^{m}(n)\left|a_{n}\right| \leq A-B \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{k, \mu}^{m}(n)=\left(1+\frac{k(n-1)}{\mu+1}\right)^{m} \tag{2.2}
\end{equation*}
$$

then $f \in H_{k, \mu}^{m}(\lambda, A, B)$.
Proof. To prove $f \in H_{k, \mu}^{m}(\lambda, A, B)$, from the class condition (1.4), we need to show

$$
\begin{equation*}
S_{1}:=\left|\frac{1-P(z)}{B P(z)-A}\right|<1 \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
P(z)=\frac{(1-\lambda) \mathcal{J}_{k, \mu}^{m+1} f(z)+\lambda z\left(\mathcal{J}_{k, \mu}^{m+1} f(z)\right)^{\prime}}{\mathcal{J}_{k, \mu}^{m} f(z)} \tag{2.4}
\end{equation*}
$$

Observe from (1.1) that if $a_{n}=0(n \geq 2)$, then $P(z)=1(z \in \mathbb{U})$ which verifies (2.3), and if there is some $a_{n} \neq 0(n \geq 2)$, then from (2.1) it follows that

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left\{A-B(1-\lambda+\lambda n)\left(1+\frac{k(n-1)}{\mu+1}\right)\right\} \theta_{k, \mu}^{m}(n)\left|a_{n}\right| \\
< & \sum_{n=2}^{\infty}\left[A-1+(1-B)(1-\lambda+\lambda n)\left(1+\frac{k(n-1)}{\mu+1}\right)\right] \theta_{k, \mu}^{m}(n)\left|a_{n}\right| \\
\leq & A-B . \tag{2.5}
\end{align*}
$$

Now, on writing the series expressions from (1.3) in (2.4), we get

$$
S_{1}=\left|\frac{\sum_{n=2}^{\infty}\left\{(1-\lambda+\lambda n)\left(1+\frac{k(n-1)}{\mu+1}\right)-1\right\} \theta_{k, \mu}^{m}(n) a_{n} z^{n-1}}{A-B+\sum_{n=2}^{\infty}\left\{A-B(1-\lambda+\lambda n)\left(1+\frac{k(n-1)}{\mu+1}\right)\right\} \theta_{k, \mu}^{m}(n) a_{n} z^{n-1}}\right|
$$

which in view of (2.5), proves

$$
S_{1}<\frac{\sum_{n=2}^{\infty}\left\{(1-\lambda+\lambda n)\left(1+\frac{k(n-1)}{\mu+1}\right)-1\right\} \theta_{k, \mu}^{m}(n)\left|a_{n}\right|}{A-B-\sum_{n=2}^{\infty}\left\{A-B(1-\lambda+\lambda n)\left(1+\frac{k(n-1)}{\mu+1}\right)\right\} \theta_{k, \mu}^{m}(n)\left|a_{n}\right|} \leq 1
$$

if (2.1) holds. This completes the proof of Theorem 2.1.

3. Radius Constant

Theorem 3.1. Let $f \in \mathcal{A}$ be of the form (1.1) and let for some $m \in \mathbb{Z}, \mu>-1, k>0$, $\theta_{k, \mu}^{m}(n)(n \geq 2)$ be given by (2.2). If $\left|a_{2}\right|=\frac{2 b}{\theta_{k, \mu}^{m}(2)}(0 \leq b \leq 1)$ and $\left|a_{n}\right| \leq \frac{c n+d}{\theta_{k, \mu}^{m}(n)}(n \geq 3, c \geq 0, d \geq 0)$, then $H_{k, \mu}^{m}(\lambda, A, B)$-radius is the real root in $(0,1)$, given by the equation

$$
\begin{aligned}
& {[(c+d+1)(A-B)+(2 c-2 b+d)\{(1-B)(1+\lambda)(1+K)+A-1\} r](1-r)^{4} } \\
&=(1-B) \lambda c K\left(1+4 r+r^{2}\right)+(1-B)\{c(\lambda+K-2 \lambda K)+\lambda d K\}\left(1-r^{2}\right) \\
&+[\{c(1-\lambda)(1-K)+d(\lambda+K-2 \lambda K)\}(1-B)+c(A-1)](1-r)^{2} \\
&(3.1) \quad+d\{(1-\lambda)(1-K)(1-B)+A-1\}(1-r)^{3},
\end{aligned}
$$

where $K=\frac{k}{\mu+1}$. The result is sharp.
Proof. Let $r_{0} \in(0,1)$ be the $H_{k, \mu}^{m}(\lambda, A, B)-$ radius. Then, we show that $\frac{f\left(r_{0} z\right)}{r_{0}} \in H_{k, \mu}^{m}(\lambda, A, B)$. Hence, from the coefficient inequality (2.1), we show

$$
S_{2}:=\sum_{n=2}^{\infty}\left[A-1+(1-B)(1-\lambda+\lambda n)\left(1+\frac{k(n-1)}{\mu+1}\right)\right] \theta_{k, \mu}^{m}(n)\left|a_{n}\right| r_{0}^{n-1} \leq A-B
$$

Applying conditions $\left|a_{2}\right|=\frac{2 b}{\theta_{k, \mu}^{m b}(2)}(0 \leq b \leq 1)$ and $\left|a_{n}\right| \leq \frac{c n+d}{\theta_{k, \mu}^{m+}(n)}(n \geq 3, c \geq 0, d \geq 0)$, on putting $\frac{k}{\mu+1}=K$, we obtain

$$
\begin{aligned}
S_{2} \leq & \{A-1+(1-B)(1+\lambda)(1+K)\} 2 b r_{0}+\lambda c K(1-B) \sum_{n=3}^{\infty} n^{3} r_{0}^{n-1} \\
& +(1-B)[c\{\lambda(1-2 K)+K\}+d \lambda K] \sum_{n=3}^{\infty} n^{2} r_{0}^{n-1} \\
& +[\{c(1-\lambda)(1-K)+d(\lambda+K-2 \lambda K)\}(1-B)+c(A-1)] \sum_{n=3}^{\infty} n r_{0}^{n-1} \\
& +d\{A-1+(1-\lambda)(1-K)(1-B)\} \sum_{n=3}^{\infty} r_{0}^{n-1}
\end{aligned}
$$

and on using the expansions

$$
\begin{equation*}
\frac{1}{1-r_{0}}=\sum_{n=1}^{\infty} r_{0}^{n-1} \tag{3.2}
\end{equation*}
$$

$$
\begin{gather*}
\frac{1}{\left(1-r_{0}\right)^{2}}=\sum_{n=1}^{\infty} n r_{0}^{n-1}, \tag{3.3}\\
\frac{1+r_{0}}{\left(1-r_{0}\right)^{3}}=\sum_{n=1}^{\infty} n^{2} r_{0}^{n-1}, \tag{3.4}\\
\frac{1+4 r_{0}+r_{0}^{2}}{\left(1-r_{0}\right)^{4}}=\sum_{n=1}^{\infty} n^{3} r_{0}^{n-1}, \tag{3.5}
\end{gather*}
$$

we get

$$
\begin{aligned}
& S_{2} \leq\{A-1+(1-B)(1+\lambda)(1+K)\} 2 b r_{0} \\
&+\lambda c K(1-B)\left\{\frac{1+4 r_{0}+r_{0}^{2}}{\left(1-r_{0}\right)^{4}}-1-8 r_{0}\right\} \\
&+(1-B)[c\{\lambda(1-2 K)+K\}+d \lambda K]\left\{\frac{1+r_{0}}{\left(1-r_{0}\right)^{3}}-1-4 r_{0}\right\} \\
&+[\{c(1-\lambda)(1-K)+d(\lambda+K-2 \lambda K)\}(1-B)+c(A-1)] \\
&\left\{\frac{1}{\left(1-r_{0}\right)^{2}}-1-2 r_{0}\right\} \\
&+d\{A-1+(1-\lambda)(1-K)(1-B)\}\left\{\frac{1}{\left(1-r_{0}\right)}-1-r_{0}\right\} \\
&=\quad(c+d)(B-A)+(2 b-2 c-d)\{(1-B)(1+\lambda)(1+K)+A-1\} r_{0} \\
&=+\left[\lambda c K(1-B)\left(1+4 r_{0}+r_{0}^{2}\right)+(1-B)\{c\{\lambda(1-2 K)+K\}+d \lambda K\}\left(1-r_{0}^{2}\right)\right. \\
&+[\{c(1-\lambda)(1-K)+d(\lambda+K-2 \lambda K)\}(1-B)+c(A-1)]\left(1-r_{0}\right)^{2} \\
&\left.+d\{(1-\lambda)(1-K)(1-B)+A-1\}\left(1-r_{0}\right)^{3}\right] \frac{1}{\left(1-r_{0}\right)^{4}}
\end{aligned}
$$

if r_{0} satisfy (3.1). Sharpness can be verified for the function $f_{0}(z)$ such that

$$
\mathcal{J}_{k, \mu}^{m}\left(f_{0}(z)\right)=z-2 b z^{2}-\sum_{n=3}^{\infty}(c n+d) z^{n}
$$

Since, for this function

$$
\mathcal{J}_{k, \mu}^{m+1}\left(f_{0}(z)\right)=z-2 b(1+K) z^{2}-\sum_{n=3}^{\infty}\{1+K(n-1)\}(c n+d) z^{n}
$$

where $K=\frac{k}{\mu+1}$ and at $z=r_{0} \in(0,1)$, satisfying (3.1), we get

$$
\begin{equation*}
1-\frac{(1-\lambda) \mathcal{J}_{k, \mu}^{m+1} f_{0}(z)+\lambda z\left(\mathcal{J}_{k, \mu}^{m+1} f_{0}(z)\right)^{\prime}}{\mathcal{J}_{k, \mu}^{m} f_{0}(z)}=\frac{N_{r_{0}}}{D_{r_{0}}}=\frac{A-B}{1-B}>0, \tag{3.6}
\end{equation*}
$$

where $N_{r_{0}}$ and $D_{r_{0}}$ are given by

$$
\begin{aligned}
N_{r_{0}}= & (2 b-2 c-d)\{(1+\lambda) K+\lambda\} r_{0}+\lambda c K \frac{1+4 r_{0}+r_{0}^{2}}{\left(1-r_{0}\right)^{4}} \\
& +\{c(\lambda+K-2 \lambda K)+d \lambda K\} \frac{1+r_{0}}{\left(1-r_{0}\right)^{3}} \\
& -\{c(\lambda+K-\lambda K)-d(\lambda+K-2 \lambda K)\} \frac{1}{\left(1-r_{0}\right)^{2}} \\
& -d(\lambda+K-\lambda K) \frac{1}{1-r_{0}}
\end{aligned}
$$

and

$$
D_{r_{0}}=\mathcal{J}_{k, \mu}^{m}\left(f_{0}(z)\right)=(1+c+d)-(2 b-2 c-d) r_{0}-\frac{c}{\left(1-r_{0}\right)^{2}}-\frac{d}{1-r_{0}}
$$

Thus, for the function $f_{0}(z)$ at $z=r_{0}$, satisfying (3.1),

$$
P_{1}(z):=\frac{(1-\lambda) \mathcal{J}_{k, \mu}^{m+1} f_{0}(z)+\lambda z\left(\mathcal{J}_{k, \mu}^{m+1} f_{0}(z)\right)^{\prime}}{\mathcal{J}_{k, \mu}^{m} f_{0}(z)}=\frac{1+A w(z)}{1+B w(z)}
$$

where

$$
w(z)=\frac{1-P_{1}(z)}{B P_{1}(z)-A}=-1 .
$$

This completes the proof of Theorem 3.1.

Remark 3.1.

(i) Taking $m=0, k=1, \mu=0, \lambda=0$ in Theorem 3.1, we get the radius result obtained by Nargesi et al. [16, Theorem 6, p. 4].
(ii) Taking $m=0, k=1, \mu=0, A=1-2 \beta(0 \leq \beta<1), B=-1$ in Theorem 3.1, we get the radius result obtained by Nargesi et al. [16, Theorem 2, p. 2].

On giving special values: $c=1, d=0$ in Theorem 3.1, we get following result.
Corollary 3.1. Let $f \in \mathcal{A}$ be of the form (1.1) and let for some $m \in \mathbb{Z}, \mu>-1$, $k>0, \theta_{k, \mu}^{m}(n)(n \geq 2)$ be given by (2.2). If $\left|a_{2}\right|=\frac{2 b}{\theta_{k, \mu}^{m}(2)}(0 \leq b \leq 1),\left|a_{n}\right| \leq \frac{n}{\theta_{k, \mu}^{m}(n)}(n \geq 3)$, then $H_{k, \mu}^{m}(\lambda, A, B)$ - radius is the real root in $(0,1)$, given by the equation

$$
\begin{aligned}
& {[2(A-B)+2(1-b)\{(1-B)(1+\lambda)(1+K)+A-1\} r](1-r)^{4} } \\
= & \lambda K(1-B)\left(1+4 r+r^{2}\right)+(1-B)(\lambda+K-2 \lambda K)\left(1-r^{2}\right) \\
& +\{(1-\lambda)(1-K)(1-B)+A-1\}(1-r)^{2},
\end{aligned}
$$

where $K=\frac{k}{\mu+1}$. The result is sharp.
Further, giving special values: $c=0, d=M$ in Theorem 3.1, we get the following result.

Corollary 3.2. Let $f \in \mathcal{A}$ be of the form (1.1) and let for some $m \in \mathbb{Z}, \mu>-1$, $k>0, \theta_{k, \mu}^{m}(n)(n \geq 2)$ be given by (2.2). If $\left|a_{2}\right|=\frac{2 b}{\theta_{k, \mu}^{m}(2)}(0 \leq b \leq 1)$, $\left|a_{n}\right| \leq \frac{M}{\theta_{k, \mu}^{M}(n)}$ $(n \geq 3, M \geq 0)$, then $H_{k, \mu}^{m}(\lambda, A, B)-$ radius is the real root in $(0,1)$, given by the equation

$$
\begin{aligned}
& {[(M+1)(A-B)+(M-2 b)\{(1-B)(1+\lambda)(1+K)+A-1\} r](1-r)^{4} } \\
= & \lambda M K(1-B)\left(1-r^{2}\right)+M(\lambda+K-2 \lambda K)(1-B)(1-r)^{2}+ \\
& M\{(1-\lambda)(1-K)(1-B)+A-1\}(1-r)^{3},
\end{aligned}
$$

where $K=\frac{k}{\mu+1}$. The result is sharp.

Remark 3.2.

(i) For $b=1$ Corollary 3.1 provides the $H_{k, \mu}^{m}(\lambda, A, B)-$ radius if the function $\mathcal{J}_{k, \mu}^{m} f(z)$ is univalent (convex) in \mathbb{U}.
(ii) Taking $m=0, k=1, \mu=0, \lambda=0, A=1-\alpha(0 \leq \alpha<1), B=0$ in Corollary 3.1, we get the radius result obtained by Ravichandran [23, Theorem 2.1, p. 29] for starlikeness of order α and for parabolic-starlikeness, which also includes the cases when $b=0$ and 1 , respectively, [23, Corollaries 2.1.1 and 2.1.2, p. 31, 32], and when $b=1, \alpha=0$ [28, Theorem 2, p. 454].
(iii) Taking $m=0, k=1, \mu=0, \lambda=0, A=1-\alpha(0 \leq \alpha<1), B=0$ in Corollary 3.2, we get the radius result obtained by Ravichandran [23, Theorem 2.2, p. 32] which also includes the case when $b=\frac{M}{2}$ [23, Corollary 2.2.1, p.33] ([28, Theorem 2, p. 454] if $b=\frac{M}{2}, \alpha=0$).
(iv) Taking $m=1, k=1, \mu=0, \lambda=0, A=1-\alpha(0 \leq \alpha<1), B=0$ in Corollary 3.1, we get result [23, Theorem 3.1, p. 34] for convexity of order α and for uniform convexity, which includes the cases when $b=1$ and 0 , respectively, [23, Corollaries 3.1.1 and 3.1.2, p. 35,36$]$, and when $b=1, \alpha=0$ [28, Theorem 2, p. 454].
(v) On taking $m=1, k=1, \mu=0, \lambda=0, A=1-\alpha(0 \leq \alpha<1), B=0$ in Corollary 3.2, we get result [23, Theorem 3.2, p.36] which includes the cases when $b=\frac{M}{2}$ and $\alpha=0$, respectively, in [23, Corollary 3.2.1, p. 37] and [28, Theorem 2, p. 454].

Theorem 3.2. Let $f \in \mathcal{A}$ be of the form (1.1) and let for some $m \in \mathbb{Z}, \mu>-1, k>$ $0, \theta_{k, \mu}^{m}(n)(n \geq 2)$ be given by (2.2). If $\left|a_{2}\right|=\frac{2 b}{\theta_{k, \mu}^{m,(2)}}(0 \leq b \leq 1)$,
$\left|a_{n}\right| \leq \frac{c}{n \theta_{k, \mu}^{m}(n)}(n \geq 3, c \geq 0)$, then $H_{k, \mu}^{m}(\lambda, A, B)-$ radius is the real root in $(0,1)$, given by the equation

$$
\begin{align*}
& {\left[(c+1)(A-B)-\left(2 b-\frac{c}{2}\right)\{(1+\lambda)(1+K)(1-B)+A-1\} r\right](1-r)^{2} } \\
= & \lambda c K(1-B)+c(\lambda+K-2 \lambda K)(1-B)(1-r) \\
& -c\{(1-\lambda)(1-K)(1-B)+A-1\} \frac{\log (1-r)}{r}(1-r)^{2}, \tag{3.7}
\end{align*}
$$

where $K=\frac{k}{\mu+1}$. The result is sharp.
Proof. Let r_{0} be $H_{k, \mu}^{m}(\lambda, A, B)$ - radius. Then, we show that $\frac{f\left(r_{0} z\right)}{r_{0}} \in H_{k, \mu}^{m}(\lambda, A, B)$. From the coefficient inequality (2.1), we show that

$$
S_{3}:=\sum_{n=2}^{\infty}\left[A-1+(1-B)(1-\lambda+\lambda n)\left(1+\frac{k(n-1)}{\mu+1}\right)\right] \theta_{k, \mu}^{m}(n)\left|a_{n}\right| r_{0}^{n-1} \leq A-B .
$$

Applying the conditions $\left|a_{2}\right|=\frac{2 b}{\theta_{k, k}^{2 b}(2)}(n \geq 2,0 \leq b \leq 1)$ and $\left|a_{n}\right| \leq \frac{c}{n \theta_{p_{k, n}^{m}}^{m}(n)}(n \geq 3, c \geq 0)$, a calculation shows on using the expansions (3.2), (3.3), (3.4) and (on integrating (3.2)):

$$
-\frac{\log \left(1-r_{0}\right)}{r_{0}}=\sum_{n=1}^{\infty} \frac{r_{0}^{n-1}}{n},
$$

on putting $\frac{k}{\mu+1}=K$, that

$$
\begin{aligned}
S_{3} \leq & \{(1+\lambda)(1+K)(1-B)+A-1\} 2 b r_{0} \\
& +\sum_{n=3}^{\infty}\{(1-\lambda+\lambda n)(1-K+K n)(1-B)+A-1\} \frac{c}{n} r_{0}^{n-1} \\
= & \{(1+\lambda)(1+K)(1-B)+A-1\} 2 b r_{0} \\
& +\lambda c K(1-B)\left\{\frac{1}{\left(1-r_{0}\right)^{2}}-1-2 r_{0}\right\} \\
& +c(\lambda+K-2 \lambda K)(1-B)\left\{\frac{1}{\left(1-r_{0}\right)}-1-r_{0}\right\} \\
& -c\{(1-\lambda)(1-K)(1-B)+A-1\}\left\{\frac{\log \left(1-r_{0}\right)}{r_{0}}+1+\frac{r_{0}}{2}\right\} \\
= & c(B-A)+\left(2 b-\frac{c}{2}\right)\{(1+\lambda)(1+K)(1-B)+A-1\} r_{0} \\
& +\lambda c K(1-B) \frac{1}{\left(1-r_{0}\right)^{2}}+c(\lambda+K-2 \lambda K)(1-B) \frac{1}{1-r_{0}} \\
& -c\{(1-\lambda)(1-K)(1-B)+A-1\} \frac{\log \left(1-r_{0}\right)}{r_{0}} \\
= & A-B
\end{aligned}
$$

if r_{0} satisfy (3.1). Sharpness can be verified for the function $f_{1}(z)$ such that

$$
\mathcal{J}_{k, \mu}^{m}\left(f_{1}(z)\right)=z-2 b z^{2}-\sum_{n=3}^{\infty} \frac{c}{n} z^{n} .
$$

Since, for the function $f_{1}(z)$,

$$
\mathcal{J}_{k, \mu}^{m+1}\left(f_{1}(z)\right)=z-2 b(1+K) z^{2}-\sum_{n=3}^{\infty}(1-K+K n) \frac{c}{n} z^{n},
$$

where $K=\frac{k}{\mu+1}$, at $z=r_{0} \in(0,1)$, satisfying (3.7), we get

$$
1-\frac{(1-\lambda) \mathcal{J}_{k, \mu}^{m+1} f_{1}(z)+\lambda z\left(\mathcal{J}_{k, \mu}^{m+1} f_{1}(z)\right)^{\prime}}{\mathcal{J}_{k, \mu}^{m} f_{1}(z)}=\frac{\mathcal{N}_{r_{0}}}{\mathcal{D}_{r_{0}}}=\frac{A-B}{1-B}>0
$$

$\mathcal{N}_{r_{0}}$ and $\mathcal{D}_{r_{0}}$ are given by

$$
\begin{aligned}
\mathcal{N}_{r_{0}}= & \left(2 b-\frac{c}{2}\right)(\lambda+K+\lambda K) r_{0}+\lambda c K \frac{1}{\left(1-r_{0}\right)^{2}} \\
& +c(\lambda+K-2 \lambda K) \frac{1}{1-r_{0}}+c(\lambda+K-\lambda K) \frac{\log \left(1-r_{0}\right)}{r_{0}} \\
& \mathcal{D}_{r_{0}}=1+c-\left(2 b-\frac{c}{2}\right) r_{0}+c \frac{\log \left(1-r_{0}\right)}{r_{0}} .
\end{aligned}
$$

This completes the proof of Theorem 3.2.

Remark 3.3.

(i) Taking $m=0, k=1, \mu=0, \lambda=\alpha, A=1-2 \beta, B=-1$ in Theorem 3.2 , we get the result of Nargesi et al. [16, Theorem 3, p. 3] for the class $\mathcal{L}(\alpha, \beta)$
(ii) Taking $m=0, k=1, \mu=0, \lambda=0$ in Theorem 3.2, we get result [16, Theorem 7, p. 5] for the class $\mathcal{S T}[A, B]$.
(iii) Taking $m=0, k=1, \mu=0, \lambda=0, A=1-\alpha(0 \leq \alpha<1), B=0, c=M$ in Theorem 3.2, we get a result of Ravichandran [23, Theorem 2.3, p. 34].

REFERENCES

1. Rosihan M. All, Nak Eun Cho, Naveen Kumar Jain and V. Ravichandran: Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination. Filomat 26(3), (2012), 553-561.
2. Rosihan M. Ali, S. Nagpal and V. Ravichandran: Second order Differential Subordinations for analytic functions with fixed initial coeficients. Bull. Malays. Math. Sci. Soc. 2(34), (2011), 611-629.
3. M. K. Aouf and T. M. Seoudy: On differential Sandwich theorems of analytic functions defined by generalized Salagean integral operator. Appl. Math. Lett. (2011), doi:10.1016/j.aml.2011.03.011
4. L. de Branges: A proof of the Bieberbach conjecture. Acta Mathematica 154(1-2), (1985), 137-152.
5. N. E. Сho and T. H. Kim: Multiplier transformations and strongly close-to-convex functions. Bull. Korean Math. Soc. 40 (2003), 399-410.
6. N. E. Cho and H. M. Srivastava: Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Modelling 37 (2003), 39-49.
7. P. L. Duren: Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York, (1983).
8. T. M. Flett: The dual of an identity of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl. 38 (1972), 746-765.
9. A. Gangadharan and V. Ravichandran: Radii of convexity and strong starlikeness for some classes of analytic functions. J. Math. Anal. Appl. 211 (1997), Art. AY975463, 301-313 .
10. V. I. Gavrilov: Remarks on the radius of univalence of holomorphic functions. Akademiya Nauk SSSR: Matematicheskie Zametki 7 (1970), 295-298.
11. R. M. Goel: The radius of convexity and starlikeness for certain classes of analytic functions with fixed second coefficients. Ann. Univ. Mariae Curie-Skłodowska Sect. A. 25 (1971) 33-39.
12. W. Janowski: Some extremal problems for certain families of analytic functions I Ann. Polon. Math. 28 (1973), 298-326.
13. Y. Komatu: On analytical prolongation of a family of operators. Mathematica (Cluj) 32 (55), (1990), 141-145.
14. E. Landau: Der Picard-Schottkysche Satz und die Blochsche Konstante. Sitzungsberichte der Akad. der Wiss. zu Berlin, Phys. Mat. Klass (1925), 467-474.
15. S. Nagpal and V. Ravichandran: Applications of theory of differential subordination for functions with fixed initial coefficient to univalent functions. Ann. Polon. Math. 105(3), (2012), 225-238.
16. Mahnaz M. Nargesi, Roshan M. Ali and V. Ravichandran: Radius constants for analytic functions with fixed second coefficient. The Scientific World J. 2014, Art. ID 898614, 6 pages, (2014).
17. Z. Nehari: Coformal Mappings. McGraw-Hill, New York, (1952).
18. F. M. Al-Oboudi: On univalent functions defined by a generalized Salagean operator. Indian J. Math. Math. Sci. 25-28 (2004), 1429-1436.
19. M. Obradovic and S. B. Joshi: On certain classes of strongly starlike functions. Taiwanese J. Math. 2(3), (1998), 297-302.
20. J. Patel: Inclusion relations and convolution properties of certain subclasses of analytic functions defined by a generalized Sălă̆gean operator. Bull. Belg. Math. Soc. Simon Stavin 15 (2008), 33-47.
21. R. K. Raina and Poonam Sharma: Subordination properties of univalent functions involving a new class of operators. Electr. J. Math. Anal. Appl. 2(1), (2014), 37-52.
22. R. K. Raina and Poonam Sharma: Subordination preserving properties associated with a class of operators, Le Matematiche 68(1), (2013), 217-228.
23. V. Ravichandran: Radii of starlikeness and convexity of analytic functions satisfying certain coefficient inequalities. Math. Slovaca 64(1), (2014), 27-38.
24. G. S. Sălaăgean: Subclasses of univalent functions, in Complex Analysis. Fifth RomanianFinnish Seminar, Part I (Bucharest, 1981), Lecture Notes in Mathematics 1013, SpringerVerlag, Berlin and New York (1983).
25. Poonam Sharma, Ravinder Krishna Raina and Janusz sokoॄ: Certain subordination results involving a class of operators. Analele Univ. Oradea Fasc. Matematica 21(2), (2014), 89-99.
26. D. E. Tepper: On the radius of convexity and boundary distortion of Schlicht functions. Trans. Amer. Math. Soc. 150 (1970), 519-528.
27. B. A. Uralegaddi and C. Somanatha: Certain classes of univalent functions. in: H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, (1992), 371-374.
28. S. Yamashita: Radii of univalence, starlikeness, and convexity. Bull. Aust. Math. Soc. 25(3), (1982), 453-457.

Poonam Sharma

Department of Mathematics \& Astronomy
University of Lucknow
Lucknow 226007 UP, India
sharma_poonam@lkouniv.ac.in

Ankita
Department of Mathematics \& Astronomy
University of Lucknow
Lucknow 226007 UP, India
ankita.maths06@gmail.com

