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RADIUS CONSTANTS FOR A CLASS OF ANALYTIC FUNCTIONS
ASSOCIATED WITH A MULTIPLIER LINEAR OPERATOR

Poonam Sharma and Ankita ∗

Abstract. The purpose of this paper is to find radius constants for a Janowski type
class Hm

k,μ(λ,A,B) involving a multiplier linear operator for functions f satisfying certain
conditions on its coefficients. The sharpness of the results are verified. Some consequent
results are also mentioned.
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1. Introduction

LetA denotes a class of functions of the form

(1.1) f (z) = z +
∞∑

n=2

anzn

which are analytic in the open unit disk U = {z : |z| < 1}. A subclass of univalent
functions f ∈ A is denoted by S. Bieberbach conjectured that a function f ∈ S of
the form (1.1) satisfies the coefficient condition: |an| ≤ n (n ≥ 2) which was proved
by de Branges [4]. But it was observed that this coefficient condition is not sufficient
for the functions f to be in the class S. For example, functions

f1(z) = z + 2z2, f2(z) = 2z − z
(1 − z)2

satisfy coefficient condition |an| ≤ n but their derivatives vanish inside U, hence,
the functions f1 and f2 are not in the class S. Thus, we needed to find the least
upper bound r( f ) of r ∈ (0, 1) such that f ∈ A satisfying the condition |an| ≤ n be
univalent in Ur = {z : |z| < r} and is called the radius of univalence or the radius
constant for f ∈ S or S− radius. Gavrilov [10] showed that radius of univalence
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for functions f ∈ A of the form (1.1) satisfying |an| ≤ n, is the real root r0 = 0.164
(approx.) of the equation 2 (1 − r)3 − (1 + r) = 0 and the result is sharp for the
function f2. Gavrilov also obtained the radius of univalence of functions f ∈ A
satisfying another inequality |an| ≤ M (M > 0, n ≥ 2). Landau [14] obtained the
radius of univalence for functions f ∈ A satisfying

∣∣∣ f (z)∣∣∣ ≤ M. Various subclasses
of S have been defined and studied so far, well known out of which are the
classes of starlike and convex functions, denoted, respectively, by ST and CV
(see Duren [7]). Yamashita [28] showed that the radius of univalence obtained
by Gavrilov is same as the radius of starlikeness for functions f ∈ A satisfying
|an| ≤ n or |an| ≤ M . Yamashita [28] also determined the radius of convexity, for
functions f ∈ A satisfying |an| ≤ n, which is the real root r0 = 0.090 of the equation
2(1 − r)4 − (1 + 4r + r2) = 0, while the radius of convexity for functions f ∈ A
satisfying |an| ≤M is the real root of (M + 1) (1 − r)3 −M (1 + r) = 0.

The second coefficient a2 of f ∈ A given by (1.1), determines some important
properties such as growth and distortion estimates of the function f . By fixing the
second coefficient, let Ab denotes a subclass of the class A whose members are of
the form

f (z) = z +
∞∑

n=2

anzn (|a2| = 2b, 0 ≤ b ≤ 1) .

Several authors have investigated various properties of univalent functions and its
subclasses by fixing the second coefficient; for detail see [1, 2, 11, 15, 16, 23, 26]. In
[23], Ravichandran obtained the sharp radii of starlikeness and convexity of order
α (0 ≤ α < 1) for functions f ∈ Ab satisfying the condition |an| ≤ n or |an| ≤ M or
|an| ≤ M/n for n ≥ 3. Further, in [16], radius constants are obtained for functions
f ∈ Ab satisfying the condition |an| ≤ cn + d (c, d ≥ 0) or |an| ≤ c/n (c > 0) for n ≥ 3.

Let f and � be analytic in U. Then we say f is subordinate to �, written
f (z) ≺ �(z) (z ∈ U), if there is an analytic function w with w(0) = 0 and |w(z)| < 1,
such that f (z) = �(w(z)). In particular, if � is univalent in U, then f is subordinate
to � provided f (0) = �(0) and f (U) ⊆ �(U). The concept of subordination can be
found in [17]. Involving subordination, a brief history for various subclasses of S
may be found in [1].

In geometric function theory, various linear operators, associated with some
geometric properties of the image domain are studied. For the purpose of this
paper, we consider a multiplier linear operator Jm

k,μ : A→A, defined recently in
[21] (see also [22], [25]), for m ∈ Z = {...,−2,−1, 0, 1, 2, ...} and for μ > −1, k > 0, by

(1.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Jm
k,μ f (z) = f (z), m = 0,

Jm
k,μ f (z) = μ+1k z1−

μ+1
k

z∫
0
t
μ+1

k −2Jm+1
k,μ f (t)dt, m ∈ Z− = {−1,−2, . . .} ,

Jm
k,μ f (z) = k

μ+1z2−
μ+1

k d
dt

(
z
μ+1

k −1Jm−1
k,μ f (z)

)
, m ∈ Z+ = {1, 2, . . .}
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The series representation of Jm
k,μ f (z) for f (z) of the form (1.1) is given by

(1.3) Jm
k,μ f (z) = z +

∞∑
n=2

(
1 +

k (n − 1)
μ + 1

)m

anzn.

The multiplier operator Jm
k,μ generalizes several previously studied operators

in various papers some of which are as follows:

(i) Jm
k,0 = Dm

k (m ∈N0 = {0, 1, 2, ...}) [18]

(ii) Jm
1,0 = Dm (m ∈N0) [24]

(iii) Jm
1,1 =D

m [27]

(iv) Jm
1,μ = Im

μ (m ∈N0, μ ≥ 0) [5, 6]

(v) J−n
k,0 = I

−n
k (n ∈N0, k > 0) [3, 20]

(vi) J−n
1,a = Ln

a+1 (n ∈N0, a ≥ 0) [13]

(vii) J−n
1,1 = I−n (n ∈N0) [8]

(viii) J−n
1,0 f (z) = I−n (n ∈N0, λ > 0) [24]

Involving the operator Jm
k,μ, we define a Janowski type class Hm

k,μ(λ,A,B) as
follows:

Definition 1.1. A function f ∈ A is said to be in class Hm
k,μ(λ,A,B), if it satisfies for

λ ≥ 0, −1 ≤ B < A ≤ 1, a subordination:

(1.4)
(1 − λ)Jm+1

k,μ f (z) + λz
(
Jm+1

k,μ f (z)
)′

Jm
k,μ f (z)

≺ 1 + Az
1 + Bz

(z ∈ U) .

Note that on giving appropriate values to the parameters involved in the afore-
mentioned class Hm

k,μ(λ,A,B), we find several previously defined classes. Some of
these are as follows:

(i) H0
1,0(0,A,B) = ST [A,B] ,H1

1,0(0,A,B) = CV [A,B] studied by Janowski [12].

(ii) H0
1,0(α, 1 − 2β,−1) = L(α, β) (

α ≥ 0, β ∈ R\ {1}) studied by Nargesi et al. [16]
([19]).

(iii) H0
1,0(0, 1 − α, 0),H

1
1,0(0, 1− α, 0) (0 ≤ α < 1) studied by Ravichandran [23].
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Denote Hm
k,μ(λ, 1− 2β,−1) = Hm

k,μ(λ, β)
(
0 ≤ β < 1

)
and Hm

k,μ(λ, 0) = Hm
k,μ(λ). Func-

tions in the class Hm
k,μ(λ, β) satisfy

(1.5) Re

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1 − λ)Jm+1

k,μ f (z) + λz
(
Jm+1

k,μ f (z)
)′

Jm
k,μ f (z)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
> β (z ∈ U) .

Since, for −1 ≤ D ≤ B < A ≤ C ≤ (
1 − 2β

) ≤ 1,

1 + Az
1 + Bz

≺ 1 + Cz
1 +Dz

≺
1 +

(
1 − 2β

)
z

1 − z
≺ 1 + z

1 − z
(
0 ≤ β < 1; z ∈U)

,

we observe that
Hm

k,μ(λ,A,B) ⊂ Hm
k,μ(λ,C,D),

and
Hm

k,μ(λ,A,B) ⊂ Hm
k,μ(λ, β) ⊂ Hm

k,μ(λ).

But the reverse inclusion is true in some diskUr.According to [9], we have follow-
ing inclusions:

(i) Hm
k,μ(λ,C,D) ⊂ Hm

k,μ(λ,A,B) inUr1 ,where r1 = min
(

A−B
C−D−|AD−BC| , 1

)
.

(ii) Hm
k,μ(λ, β) ⊂ Hm

k,μ(λ,A,B) inUr2 , where r2 = min
(

A−B
2(1−β)−|A+B(1−2β)| , 1

)
.

(iii) Hm
k,μ(λ) ⊂ Hm

k,μ(λ,A,B) inUr3 , where r3 = min
(

A−B
2−|A+B| , 1

)
.

We note that the functions belonging to a class, satisfy certain coefficient con-
dition, for example, if f ∈ A of the form (1.1) is convex (univalent) in U, then
|an| ≤ n (n ≥ 2) and if it is starlike in U, then |an| ≤ 1 (n ≥ 2) . Also, if f satisfies∣∣∣ f (z)∣∣∣ ≤ M (M > 0; z ∈ U) , then |an| ≤ M (n ≥ 2) , and if Re

(
f ′(z)

)
> 0 in U, then

|an| ≤ 2/n (n ≥ 2) .

The purpose of this paper is to find results on Hm
k,μ(λ,A,B)− radius for the func-

tions satisfying certain conditions on the coefficients an (n ≥ 2) ,which presumingly
arise for the functions belonging to various classes. Motivated with the work [16]
and [23], for f ∈A of the form (1.1), satisfying certain conditions on the coefficients
an (n ≥ 2), Hm

k,μ(λ,A,B)− radius is obtained by using the sufficient coefficient con-
dition for the class Hm

k,μ(λ,A,B) which is also obtained in this paper. The sharpness
of the radii results are verified. Some consequent results are also mentioned.

2. Coefficient Inequality
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Theorem 2.1. Let μ > −1, k > 0, λ ≥ 0 and let −1 ≤ B < 0,B < A ≤ 1. If f ∈ A of the
form (1.1) satisfies the inequality

(2.1)
∞∑

n=2

[
A − 1 + (1 − B) (1 − λ + λn)

(
1 +

k (n − 1)
μ + 1

)]
θm

k,μ (n) |an| ≤ A − B,

where

(2.2) θm
k,μ (n) =

(
1 +

k (n − 1)
μ + 1

)m

,

then f ∈ Hm
k,μ(λ,A,B).

Proof. To prove f ∈ Hm
k,μ(λ,A,B), from the class condition (1.4), we need to show

(2.3) S1 :=
∣∣∣∣∣ 1 − P(z)
BP(z) − A

∣∣∣∣∣ < 1,

where

(2.4) P(z) =
(1 − λ)Jm+1

k,μ f (z) + λz
(
Jm+1

k,μ f (z)
)′

Jm
k,μ f (z)

.

Observe from (1.1) that if an = 0 (n ≥ 2) , then P(z) = 1 (z ∈ U) which verifies (2.3),
and if there is some an � 0 (n ≥ 2) , then from (2.1) it follows that

∞∑
n=2

{
A − B (1 − λ + λn)

(
1 +

k (n − 1)
μ + 1

)}
θm

k,μ (n) |an|

<
∞∑

n=2

[
A − 1 + (1 − B) (1 − λ + λn)

(
1 +

k (n − 1)
μ + 1

)]
θm

k,μ (n) |an|

≤ A − B.(2.5)

Now, on writing the series expressions from (1.3) in (2.4), we get

S1 =

∣∣∣∣∣∣∣∣∣∣∣

∞∑
n=2

{
(1 − λ + λn)

(
1 + k(n−1)

μ+1

)
− 1

}
θm

k,μ (n) anzn−1

A − B +
∞∑

n=2

{
A − B (1 − λ + λn)

(
1 + k(n−1)

μ+1

)}
θm

k,μ (n) anzn−1

∣∣∣∣∣∣∣∣∣∣∣
which in view of (2.5), proves

S1 <

∞∑
n=2

{
(1 − λ + λn)

(
1 + k(n−1)

μ+1

)
− 1

}
θm

k,μ (n) |an|

A − B −
∞∑

n=2

{
A − B (1 − λ + λn)

(
1 + k(n−1)

μ+1

)}
θm

k,μ (n) |an|
≤ 1

if (2.1) holds. This completes the proof of Theorem 2.1.
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3. Radius Constant

Theorem 3.1. Let f ∈ A be of the form (1.1) and let for some m ∈ Z, μ > −1, k > 0,
θm

k,μ (n) (n ≥ 2) be given by (2.2). If |a2| = 2b
θm

k,μ(2)
(0 ≤ b ≤ 1) and

|an| ≤ cn+d
θm

k,μ(n)
(n ≥ 3, c ≥ 0, d ≥ 0) , then Hm

k,μ(λ,A,B)− radius is the real root in (0, 1), given

by the equation

[(c + d + 1) (A − B) + (2c − 2b + d) {(1 − B) (1 + λ) (1 + K) + A − 1} r] (1 − r)4

= (1 − B)λcK
(
1 + 4r + r2

)
+ (1 − B) {c (λ + K − 2λK) + λdK} (1 − r2)

+ [{c (1 − λ) (1 − K) + d (λ + K − 2λK)} (1 − B) + c (A − 1)] (1 − r)2

+d {(1 − λ) (1 − K) (1 − B) + A − 1} (1 − r)3 ,(3.1)

where K = k
μ+1 . The result is sharp.

Proof. Let r0 ∈ (0, 1) be the Hm
k,μ(λ,A,B)− radius. Then, we show that

f (r0z)
r0
∈ Hm

k,μ(λ,A,B).Hence, from the coefficient inequality (2.1), we show

S2 :=
∞∑

n=2

[
A − 1 + (1 − B) (1 − λ + λn)

(
1 +

k (n − 1)
μ + 1

)]
θm

k,μ (n) |an| rn−1
0 ≤ A − B.

Applying conditions |a2| = 2b
θm

k,μ(2)
(0 ≤ b ≤ 1) and |an| ≤ cn+d

θm
k,μ(n)

(n ≥ 3, c ≥ 0, d ≥ 0) , on

putting k
μ+1 = K, we obtain

S2 ≤ {A − 1 + (1 − B) (1 + λ) (1 + K)} 2br0 + λcK (1 − B)
∞∑

n=3

n3rn−1
0

+ (1 − B) [c {λ (1 − 2K) + K} + dλK]
∞∑

n=3

n2rn−1
0

+ [{c (1 − λ) (1 − K) + d (λ + K − 2λK)} (1 − B) + c (A − 1)]
∞∑

n=3

nrn−1
0

+d {A − 1 + (1 − λ) (1 − K) (1 − B)}
∞∑

n=3

rn−1
0

and on using the expansions

(3.2)
1

1 − r0
=

∞∑
n=1

rn−1
0 ,
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(3.3)
1

(1 − r0)
2 =

∞∑
n=1

nrn−1
0 ,

(3.4)
1 + r0

(1 − r0)
3 =

∞∑
n=1

n2rn−1
0 ,

(3.5)
1 + 4r0 + r20
(1 − r0)4

=

∞∑
n=1

n3rn−1
0 ,

we get

S2 ≤ {A − 1 + (1 − B) (1 + λ) (1 + K)} 2br0

+λcK (1 − B)
⎧⎪⎨⎪⎩1 + 4r0 + r20

(1 − r0)
4 − 1 − 8r0

⎫⎪⎬⎪⎭
+ (1 − B) [c {λ (1 − 2K) + K} + dλK]

{
1 + r0

(1 − r0)
3 − 1 − 4r0

}

+ [{c (1 − λ) (1 − K) + d (λ + K − 2λK)} (1 − B) + c (A − 1)]{
1

(1 − r0)
2 − 1 − 2r0

}

+d {A − 1 + (1 − λ) (1 − K) (1 − B)}
{

1
(1 − r0)

− 1 − r0

}

= (c + d) (B − A) + (2b − 2c − d) {(1 − B) (1 + λ) (1 + K) + A − 1} r0
+

[
λcK (1 − B)

(
1 + 4r0 + r20

)
+ (1 − B) {c {λ (1 − 2K) + K} + dλK} (1 − r20)

+ [{c (1 − λ) (1 − K) + d (λ + K − 2λK)} (1 − B) + c (A − 1)] (1 − r0)
2

+d {(1 − λ) (1 − K) (1 − B) + A − 1} (1 − r0)
3
] 1

(1 − r0)
4

= A − B

if r0 satisfy (3.1). Sharpness can be verified for the function f0(z) such that

Jm
k,μ( f0(z)) = z − 2bz2 −

∞∑
n=3

(cn + d)zn.

Since, for this function

Jm+1
k,μ ( f0(z)) = z − 2b (1 + K) z2 −

∞∑
n=3

{1 + K (n − 1)} (cn + d)zn,
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where K = k
μ+1 and at z = r0 ∈ (0, 1) , satisfying (3.1), we get

(3.6) 1 −
(1 − λ)Jm+1

k,μ f0(z) + λz
(
Jm+1

k,μ f0(z)
)′

Jm
k,μ f0(z)

=
Nr0

Dr0
=

A − B
1 − B

> 0,

where Nr0 and Dr0 are given by

Nr0 = (2b − 2c − d) {(1 + λ)K + λ} r0 + λcK
1 + 4r0 + r20
(1 − r0)4

+ {c (λ + K − 2λK) + dλK} 1 + r0
(1 − r0)

3

− {c (λ + K − λK) − d (λ + K − 2λK)} 1
(1 − r0)2

−d (λ + K − λK)
1

1 − r0
and

Dr0 = Jm
k,μ( f0(z)) = (1 + c + d) − (2b − 2c − d) r0 −

c
(1 − r0)2

− d
1 − r0

.

Thus, for the function f0(z) at z = r0, satisfying (3.1),

P1(z) :=
(1 − λ)Jm+1

k,μ f0(z) + λz
(
Jm+1

k,μ f0(z)
)′

Jm
k,μ f0(z)

=
1 + Aw(z)
1 + Bw(z)

where

w(z) =
1 − P1(z)

BP1(z) − A
= −1.

This completes the proof of Theorem 3.1.

Remark 3.1.

(i) Taking m = 0, k = 1, μ = 0, λ = 0 in Theorem 3.1, we get the radius result obtained by
Nargesi et al. [16, Theorem 6, p. 4].

(ii) Taking m = 0, k = 1, μ = 0, A = 1 − 2β (0 ≤ β < 1), B = −1 in Theorem 3.1, we get the
radius result obtained by Nargesi et al. [16, Theorem 2, p. 2].

On giving special values: c = 1, d = 0 in Theorem 3.1, we get following result.

Corollary 3.1. Let f ∈ A be of the form (1.1) and let for some m ∈ Z, μ > −1,
k > 0, θm

k,μ (n) (n ≥ 2) be given by (2.2). If |a2| = 2b
θm

k,μ(2)
(0 ≤ b ≤ 1), |an| ≤ n

θm
k,μ(n)

(n ≥ 3) ,

then Hm
k,μ(λ,A,B)− radius is the real root in (0, 1), given by the equation

[2 (A − B) + 2 (1 − b) {(1 − B) (1 + λ) (1 + K) + A − 1} r] (1 − r)4

= λK (1 − B)
(
1 + 4r + r2

)
+ (1 − B) (λ + K − 2λK) (1 − r2)

+ {(1 − λ) (1 − K) (1 − B) + A − 1} (1 − r)2 ,
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where K = k
μ+1 . The result is sharp.

Further, giving special values: c = 0, d =M in Theorem 3.1, we get the following
result.

Corollary 3.2. Let f ∈ A be of the form (1.1) and let for some m ∈ Z, μ > −1,
k > 0, θm

k,μ (n) (n ≥ 2) be given by (2.2). If |a2| = 2b
θm

k,μ
(2) (0 ≤ b ≤ 1), |an| ≤ M

θm
k,μ

(n)

(n ≥ 3,M ≥ 0) , then Hm
k,μ(λ,A,B)− radius is the real root in (0, 1), given by the equation

[(M + 1) (A − B) + (M − 2b) {(1 − B) (1 + λ) (1 + K) + A − 1} r] (1 − r)4

= λMK (1 − B) (1 − r2) +M (λ + K − 2λK) (1 − B) (1 − r)2 +
M {(1 − λ) (1 − K) (1 − B) + A − 1} (1 − r)3 ,

where K = k
μ+1 . The result is sharp.

Remark 3.2.

(i) For b = 1 Corollary 3.1 provides the Hm
k,μ(λ,A,B)− radius if the function Jm

k,μ f (z) is
univalent (convex) inU.

(ii) Taking m = 0, k = 1, μ = 0, λ = 0, A = 1 − α (0 ≤ α < 1) , B = 0 in Corollary 3.1, we get
the radius result obtained by Ravichandran [23, Theorem 2.1, p. 29] for starlikeness
of order α and for parabolic-starlikeness, which also includes the cases when b = 0
and 1, respectively, [23, Corollaries 2.1.1 and 2.1.2, p. 31, 32], and when b = 1, α = 0
[28, Theorem 2, p. 454].

(iii) Taking m = 0, k = 1, μ = 0, λ = 0, A = 1 − α (0 ≤ α < 1) , B = 0 in Corollary 3.2, we
get the radius result obtained by Ravichandran [23, Theorem 2.2, p. 32] which also
includes the case when b = M

2 [23, Corollary 2.2.1, p. 33] ([28, Theorem 2, p. 454] if
b = M

2 , α = 0).

(iv) Taking m = 1, k = 1, μ = 0, λ = 0, A = 1 − α (0 ≤ α < 1) , B = 0 in Corollary 3.1, we
get result [23, Theorem 3.1, p. 34] for convexity of order α and for uniform convexity,
which includes the cases when b = 1 and 0, respectively, [23, Corollaries 3.1.1 and 3.1.2,
p. 35, 36], and when b = 1, α = 0 [28, Theorem 2, p. 454].

(v) On taking m = 1, k = 1, μ = 0, λ = 0, A = 1 − α (0 ≤ α < 1) , B = 0 in Corollary 3.2,
we get result [23, Theorem 3.2, p. 36] which includes the cases when b = M

2 and α = 0,
respectively, in [23, Corollary 3.2.1, p. 37] and [28, Theorem 2, p. 454].

Theorem 3.2. Let f ∈ A be of the form (1.1) and let for some m ∈ Z, μ > −1, k >
0, θm

k,μ (n) (n ≥ 2) be given by (2.2). If |a2| = 2b
θm

k,μ(2)
(0 ≤ b ≤ 1),

|an| ≤ c
n θm

k,μ
(n) (n ≥ 3, c ≥ 0) , then Hm

k,μ(λ,A,B)− radius is the real root in (0, 1), given by

the equation[
(c + 1) (A − B) −

(
2b − c

2

)
{(1 + λ) (1 + K) (1 − B) + A − 1} r

]
(1 − r)2

= λcK (1 − B) + c (λ + K − 2λK) (1 − B) (1 − r)

−c {(1 − λ) (1 − K) (1 − B) + A − 1}
log (1 − r)

r
(1 − r)2 ,(3.7)
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where K = k
μ+1 . The result is sharp.

Proof. Let r0 be Hm
k,μ(λ,A,B)− radius. Then, we show that f (r0z)

r0
∈ Hm

k,μ(λ,A,B). From
the coefficient inequality (2.1), we show that

S3 :=
∞∑

n=2

[
A − 1 + (1 − B) (1 − λ + λn)

(
1 +

k (n − 1)
μ + 1

)]
θm

k,μ (n) |an| rn−1
0 ≤ A − B.

Applying the conditions |a2| = 2b
θm

k,μ(2)
(n ≥ 2, 0 ≤ b ≤ 1) and |an| ≤ c

nθm
k,μ(n)

(n ≥ 3, c ≥ 0) ,

a calculation shows on using the expansions (3.2), (3.3), (3.4) and (on integrating
(3.2)):

−
log (1 − r0)

r0
=

∞∑
n=1

rn−1
0

n
,

on putting k
μ+1 = K, that

S3 ≤ {(1 + λ) (1 + K) (1 − B) + A − 1} 2br0

+

∞∑
n=3

{(1 − λ + λn) (1 − K + Kn) (1 − B) + A − 1} c
n

rn−1
0

= {(1 + λ) (1 + K) (1 − B) + A − 1} 2br0

+λcK (1 − B)
{

1

(1 − r0)
2 − 1 − 2r0

}

+c (λ + K − 2λK) (1 − B)
{

1
(1 − r0)

− 1 − r0

}

−c {(1 − λ) (1 − K) (1 − B) + A − 1}
{
log (1 − r0)

r0
+ 1 +

r0
2

}

= c (B − A) +
(
2b − c

2

)
{(1 + λ) (1 + K) (1 − B) + A − 1} r0

+λcK (1 − B)
1

(1 − r0)
2 + c (λ + K − 2λK) (1 − B)

1
1 − r0

−c {(1 − λ) (1 − K) (1 − B) + A − 1}
log (1 − r0)

r0
= A − B

if r0 satisfy (3.1). Sharpness can be verified for the function f1(z) such that

Jm
k,μ( f1(z)) = z − 2bz2 −

∞∑
n=3

c
n

zn.
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Since, for the function f1(z),

Jm+1
k,μ ( f1(z)) = z − 2b (1 + K) z2 −

∞∑
n=3

(1 − K + Kn)
c
n

zn,

where K = k
μ+1 , at z = r0 ∈ (0, 1) , satisfying (3.7), we get

1 −
(1 − λ)Jm+1

k,μ f1(z) + λz
(
Jm+1

k,μ f1(z)
)′

Jm
k,μ f1(z)

=
Nr0

Dr0
=

A − B
1 − B

> 0,

Nr0 andDr0 are given by

Nr0 =
(
2b − c

2

)
(λ + K + λK) r0 + λcK

1

(1 − r0)
2

+c (λ + K − 2λK)
1

1 − r0
+ c (λ + K − λK)

log (1 − r0)
r0

Dr0 = 1 + c −
(
2b − c

2

)
r0 + c

log (1 − r0)
r0

.

This completes the proof of Theorem 3.2.

Remark 3.3.

(i) Taking m = 0, k = 1, μ = 0, λ = α,A = 1 − 2β,B = −1 in Theorem 3.2, we get the result
of Nargesi et al. [16, Theorem 3, p. 3] for the class L(α, β)

(ii) Taking m = 0, k = 1, μ = 0, λ = 0 in Theorem 3.2, we get result [16, Theorem 7, p. 5]
for the class ST [A,B] .

(iii) Taking m = 0, k = 1, μ = 0, λ = 0, A = 1 − α (0 ≤ α < 1) ,B = 0, c = M in Theorem 3.2,
we get a result of Ravichandran [23, Theorem 2.3, p. 34].
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