ON BOUNDEDNESS WITH SPEED λ IN ULTRAMETRIC FIELDS

Natarajan Narayanasubramanian Pinnangudi
Old No. 2/3, New No. 3/3
Second Main Road, R.A. Puram, Chennai 600 028, India

Abstract

In the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K. Following Kangro $[2,3,4]$, we introduce the concept of boundedness with speed λ or λ-boundedness. We then obtain a characterization of the matrix class $\left(m^{\lambda}, m^{\mu}\right)$, where m^{λ} denotes the set of all λ-bounded sequences in K. We conclude the paper with a remark about the matrix class $\left(c^{\lambda}, m^{\mu}\right)$, where c^{λ} denotes the set of all λ-convergent sequences in K.

Key words: Ultrametic (or non-archimedean) field, boundedness with speed λ (or λ-boundedness), λ-bounded by the matrix A or A^{λ}-bounded, matrix class $\left(m^{\lambda}, m^{\mu}\right)$, matrix class $\left(c^{\lambda}, m^{\mu}\right)$.

1. Introduction and Preliminaries

Throughout this paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Sequences, infinite series and infinite matrices have entries in K. In this paper, we suppose that indices and summation indices run from 0 to ∞ unless otherwise stated. For a given sequence $x=\left\{x_{k}\right\}$ in K, an infinite matrix $A=\left(a_{n k}\right), a_{n k} \in K, n, k=0,1,2, \ldots$, we define

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}, n=0,1,2, \ldots
$$

Received October 31, 2021, accepted: May 06, 2022
Communicated by Dijana Mosić
Corresponding Author: Natarajan Narayanasubramanian Pinnangudi, Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India | E-mail: pinnangudinatarajan@gmail.com
2010 Mathematics Subject Classification. 40C05, 40D05, 40H05, 46S10.
where it is assumed that the series on the right converge. $A(x)=\left\{(A x)_{n}\right\}$ is called the A-transform of the sequence $x=\left\{x_{k}\right\}$.

If X, Y are sequence spaces, we write

$$
A=\left(a_{n k}\right) \in(X, Y),
$$

if $\left\{(A x)_{n}\right\} \in Y$, whenever $x=\left\{x_{k}\right\} \in X$. In the sequel, m, c respectively denote the ultrametric Banach spaces of bounded and convergent sequences.

The following results are well-known.
Theorem 1.1. $A=\left(a_{n k}\right) \in(m, m)$ if and only if

$$
\begin{equation*}
\sup _{n, k}\left|a_{n k}\right|<\infty \tag{1.1}
\end{equation*}
$$

Theorem 1.2. [5] $A=\left(a_{n k}\right) \in(m, c)$ if and only if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} a_{n k}=0, n=0,1,2, \ldots ; \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{k \geq 0}\left|a_{n+1, k}-a_{n k}\right|=0 \tag{1.3}
\end{equation*}
$$

2. Boundedness with speed λ (or λ-boundedness), λ-boundedness by the matrix A (or A^{λ}-boundedness), characterization of the matrix class $\left(m^{\lambda}, m^{\mu}\right)$

Definition 2.1. Let $\lambda=\left\{\lambda_{n}\right\}$ be a sequence in K such that

$$
0<\left|\lambda_{n}\right| \nearrow \infty, n \rightarrow \infty .
$$

A sequence $x=\left\{x_{k}\right\}$ is said to be bounded with speed λ or λ-bounded if $x=$ $\left\{x_{k}\right\} \in c$ with $\lim _{k \rightarrow \infty} x_{k}=s$ and $\left\{\lambda_{n}\left(x_{n}-s\right)\right\}$ is bounded.

Let m^{λ} denote the set of all λ-bounded sequences in K. Note that $m^{\lambda} \subset c$.
Definition 2.2. A sequence $x=\left\{x_{k}\right\}$ in K is said to be λ-bounded by the matrix A or A^{λ}-bounded if

$$
A(x)=\left\{(A x)_{n}\right\} \in m^{\lambda} .
$$

The set of all A^{λ}-bounded sequences is denoted by m_{A}^{λ}. Here again, we note that

$$
m_{A}^{\lambda} \subset c_{A},
$$

where c_{A} denotes the convergence field of A.

In the sequel, for each $k=0,1,2, \ldots$, let

$$
e_{k}=\{0,0, \ldots, 0,1,0, \ldots\}
$$

1 occurring in the k th place and 0 elsewhere, i.e., $e_{k}=\left\{e_{k}^{j}\right\}_{j=0}^{\infty}$, where

$$
e_{k}^{j}= \begin{cases}1, & \text { if } j=k \\ 0, & \text { if } j \neq k\end{cases}
$$

and

$$
e=\{1,1,1, \ldots\}
$$

Let $\mu=\left\{\mu_{n}\right\}$ be a sequence in K such that

$$
0<\left|\mu_{n}\right| \nearrow \infty, n \rightarrow \infty .
$$

We now have the following characterization of the matrix class $\left(m^{\lambda}, m^{\mu}\right)$.
Theorem 2.1. Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then $A \in\left(m^{\lambda}, m^{\mu}\right)$ if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=a_{k}, k=0,1,2, \ldots ; \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\sup _{k \geq 0}\left|\frac{a_{n+1, k}-a_{n k}}{\lambda_{k}}\right|\right)=0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n, k}\left|\frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\right|<\infty . \tag{2.5}
\end{equation*}
$$

Proof. Necessity. Let $A=\left(a_{n k}\right) \in\left(m^{\lambda}, m^{\mu}\right)$. Note that for $k=0,1,2, \ldots, e_{k} \in m^{\lambda}$ and so $A\left(e_{k}\right) \in m^{\mu}$. Thus $A\left(e_{k}\right) \in c$.
Consequently,

$$
\lim _{n \rightarrow \infty} a_{n k}=a_{k}, k=0,1,2, \ldots, \text { i.e., (2.1) holds. }
$$

We again note that $e \in m^{\lambda}$ and so

$$
A(e) \in m^{\mu} \text {, i.e., }(2.2) \text { holds. }
$$

Let, now, $x=\left\{x_{k}\right\} \in m^{\lambda}$. Hence $x=\left\{x_{k}\right\} \in c$. Let $\lim _{k \rightarrow \infty} x_{k}=s$. Let

$$
\beta_{k}=\lambda_{k}\left(x_{k}-s\right), k=0,1,2, \ldots
$$

Then $\left\{\beta_{k}\right\} \in m$. Now,

$$
\begin{align*}
(A x)_{n} & =\sum_{k=0}^{\infty} a_{n k} x_{k} \\
& =\sum_{k=0}^{\infty} a_{n k}\left(\frac{\beta_{k}}{\lambda_{k}}+s\right) \\
& =\sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}} \beta_{k}+s \sum_{k=0}^{\infty} a_{n k} . \tag{2.6}
\end{align*}
$$

In view of (2.2),

$$
\left\{\sum_{k=0}^{\infty} a_{n k}\right\}_{n=0}^{\infty} \in m^{\mu}
$$

and so

$$
\left\{\sum_{k=0}^{\infty} a_{n k}\right\}_{n=0}^{\infty} \in c
$$

Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=a \text { (say) } \tag{2.7}
\end{equation*}
$$

Since $\left\{(A x)_{n}\right\} \in c$ and $\left\{\beta_{k}\right\} \in m$, using (2.6) and (2.7), it follows that the infinite matrix

$$
\left(\frac{a_{n k}}{\lambda_{k}}\right) \in(m, c)
$$

Consequently, (2.3) and (2.4) hold, using Theorem 1.2. By hypothesis, $\left\{(A x)_{n}\right\} \in$ m^{μ} and so $\left\{(A x)_{n}\right\} \in c$. Let $\lim _{n \rightarrow \infty}(A x)_{n}=y$. Now,

$$
\begin{align*}
y & =\lim _{n \rightarrow \infty}(A x)_{n} \\
& =\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}} \beta_{k}+s \sum_{k=0}^{\infty} a_{n k}\right) \\
& =\sum_{k=0}^{\infty} \frac{a_{k}}{\lambda_{k}} \beta_{k}+s a, \text { using (2.4) and (2.7). } \tag{2.8}
\end{align*}
$$

In view of (2.6) and (2.8), we have,

$$
(A x)_{n}-y=\sum_{k=0}^{\infty} \frac{a_{n k}-a_{k}}{\lambda_{k}} \beta_{k}+s\left(\sum_{k=0}^{\infty} a_{n k}-a\right)
$$

Hence

$$
\begin{align*}
\mu_{n}\left[(A x)_{n}-y\right]= & \sum_{k=0}^{\infty} \frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}} \beta_{k} \\
& \quad+s \mu_{n}\left(\sum_{k=0}^{\infty} a_{n k}-a\right) . \tag{2.9}
\end{align*}
$$

Since $\left\{(A x)_{n}\right\}, A(e) \in m^{\mu}$,

$$
\left\{\mu_{n}\left[(A x)_{n}-y\right]\right\},\left\{\mu_{n}\left(\sum_{k=0}^{\infty} a_{n k}-a\right)\right\} \in m
$$

Already $\left\{\beta_{k}\right\} \in m$. Thus, the infinite matrix

$$
\left(\frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\right) \in(m, m)
$$

Using Theorem 1.1,

$$
\sup _{n, k}\left|\frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\right|<\infty, \text { i.e., (2.5) holds. }
$$

Sufficiency. Let (2.1) - (2.5) hold. Then, using (2.2), (2.7) holds. Let $x=\left\{x_{k}\right\} \in$ $m^{\lambda}, \lim _{k \rightarrow \infty} x_{k}=s, \beta_{k}=\lambda_{k}\left(x_{k}-s\right)$. Then $\left\{\beta_{k}\right\} \in m$. Using (2.3) and (2.4), the infinite matrix

$$
\left(\frac{a_{n k}}{\lambda_{k}}\right) \in(m, c)
$$

Using (2.6) and (2.7), it now follows that $\left\{(A x)_{n}\right\} \in c$. Let

$$
\lim _{n \rightarrow \infty}(A x)_{n}=y
$$

So (2.8) and (2.9) hold.
In view of (2.5), the infinite matrix

$$
\left(\frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\right) \in(m, m) .
$$

Since $\left\{\beta_{k}\right\} \in m$,

$$
\left\{\sum_{k=0}^{\infty} \frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}} \beta_{k}\right\}_{n=0}^{\infty} \in m
$$

Using (2.2),

$$
\left\{\mu_{n}\left(\sum_{k=0}^{\infty} a_{n k}-a\right)\right\}_{n=0}^{\infty} \in m
$$

In view of (2.9),

$$
\left\{\mu_{n}\left[(A x)_{n}-y\right]\right\}_{n=0}^{\infty} \in m
$$

Consequently,

$$
\left\{(A x)_{n}\right\} \in m^{\mu} .
$$

This completes the proof of the theorem.
Definition 2.3. We say that an infinite matrix $A=\left(a_{n k}\right)$ preserves λ-boundedness if $A \in\left(m^{\lambda}, m^{\lambda}\right)$.

Definition 2.4. An infinite matrix $A=\left(a_{n k}\right)$ is said to be regular if $A \in(c, c)$ and $\lim _{n \rightarrow \infty}(A x)_{n}=\lim _{k \rightarrow \infty} x_{k}, x=\left\{x_{k}\right\} \in c$.

The following result is an immediate consequence of Theorem 2.1.
Theorem 2.2. Let $A=\left(a_{n k}\right)$ be a regular matrix. Then A preserves λ-boundedness if and only if

$$
\begin{equation*}
\sup _{n, k}\left|\frac{\lambda_{n} a_{n k}}{\lambda_{k}}\right|<\infty \tag{2.10}
\end{equation*}
$$

Definition 2.5. [8] A sequence $\left\{x_{k}\right\}$ in $K=Q_{p}$, the p-adic field for a prime p, is said to be Y-summable to ℓ if

$$
\frac{x_{n}+x_{n-1}}{2} \rightarrow \ell, n \rightarrow \infty
$$

Note that the Y-method is defined by the infinite matrix $A=\left(a_{n k}\right)$, where,

$$
a_{n k}= \begin{cases}\frac{1}{2}, & \text { if } k=n-1, n \\ =0, & \text { otherwise }\end{cases}
$$

It is easy to check that the Y-method is regular. In addition, using (2.10), we can easily check that the Y-method preserves λ-boundedness if and only if

$$
\left\{\frac{\lambda_{n}}{\lambda_{n-1}}\right\} \in m
$$

For instance, choose $\lambda_{n}=\frac{1}{p^{n}}, n=0,1,2, \ldots$ in Q_{p}. Then

$$
0<\left|\lambda_{n}\right|_{p}=\frac{1}{|p|_{p}^{n}} \nearrow \infty, n \rightarrow \infty
$$

where $|\cdot|_{p}$ is the p-adic valuation. Now,

$$
\left|\frac{\lambda_{n}}{\lambda_{n-1}}\right|_{p}=\left|\frac{1 / p^{n}}{1 / p^{n-1}}\right|_{p}=\frac{1}{|p|_{p}}, n=0,1,2, \ldots
$$

so that

$$
\left\{\frac{\lambda_{n}}{\lambda_{n-1}}\right\} \in m
$$

Consequently, the Y-method preserves λ-boundedness for the above choice of $\lambda=$ $\left\{\lambda_{n}\right\}$.

For the sake of completeness, we recall the following definition from [7]. Let, as usual, $\lambda=\left\{\lambda_{n}\right\}$ be a sequence in K such that

$$
0<\left|\lambda_{n}\right| \nearrow \infty, n \rightarrow \infty .
$$

Definition 2.6. A sequence $\left\{x_{n}\right\}$ in K is said to be convergent with speed λ or λ-convergent if $\left\{x_{n}\right\} \in c$ with $\lim _{n \rightarrow \infty} x_{n}=s$ and

$$
\lim _{n \rightarrow \infty} \lambda_{n}\left(x_{n}-s\right) \text { exists. }
$$

Let c^{λ} denote the set of all λ-convergent sequences in K. By definition,

$$
c^{\lambda} \subset m^{\lambda} \subset c
$$

We now have the following result, the proof of which is very similar to the proof of Theorem 2.1.

Theorem 2.3. $A=a_{n k} \in\left(c^{\lambda}, m^{\mu}\right)$ if and only if $A \in\left(m^{\lambda}, m^{\mu}\right)$. In other words, $A \in\left(c^{\lambda}, m^{\mu}\right)$ if and only if (2.1) - (2.5) are satisfied.

REFERENCES

1. Ants Aasma, Hemen Dutta and P. N. Natarajan: An Introductory Course in Summability Theory. Wiley, 2017.
2. G. Kangro: On the summability factors of the Bohr-Hardy type for a given speed I. Eesti NSV Tead. Akad. Toimetised Füüs. - Mat. 18(2) (1969), 137-146.
3. G. Kangro: On the summability factors of the Bohr-Hardy type for a given speed II. Eesti NSV Tead. Akad. Toimetised Füüs. - Mat. 18(4) (1969), 387-395.
4. G. Kangro: Summability factors for the series λ-bounded by the methods of Riesz and Cesàro. Tartu Riikl. Ül. Toimetised. 277 (1971), 136-154.
5. P. N. Natarajan: The Steinhaus theorem for Toeplitz matrices in non-archimedean fields. Comment. Math. Prace Mat. 20 (1978), 417-422.
6. P. N. Natarajan: An Introduction to Ultrametric Summability Theory. Springer, 2014.
7. P. N. Natarajan: On covergence and summability with speed in ultrametric fields (Communicated for publication).
8. V. K. Srinivasan: On certain summation processes in the p-adic field. Indag. Math. 27 (1965), 319-325.
