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Abstract. In the present paper, K denotes a complete, non-trivially valued, ultrametric
(or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are
in K. Following Kangro [2, 3, 4], we introduce the concept of boundedness with speed
λ or λ-boundedness. We then obtain a characterization of the matrix class (mλ,mµ),
where mλ denotes the set of all λ-bounded sequences in K. We conclude the paper with
a remark about the matrix class (cλ,mµ), where cλ denotes the set of all λ-convergent
sequences in K.
Key words: Ultrametic (or non-archimedean) field, boundedness with speed λ (or
λ-boundedness), λ-bounded by the matrix A or Aλ-bounded, matrix class (mλ,mµ),
matrix class (cλ,mµ).

1. Introduction and Preliminaries

Throughout this paper, K denotes a complete, non-trivially valued, ultrametric
(or non-archimedean) field. Sequences, infinite series and infinite matrices have
entries in K. In this paper, we suppose that indices and summation indices run
from 0 to ∞ unless otherwise stated. For a given sequence x = {xk} in K, an
infinite matrix A = (ank), ank ∈ K, n, k = 0, 1, 2, . . . , we define

(Ax)n =

∞∑
k=0

ankxk, n = 0, 1, 2, . . . ,
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where it is assumed that the series on the right converge. A(x) = {(Ax)n} is called
the A-transform of the sequence x = {xk}.

If X,Y are sequence spaces, we write

A = (ank) ∈ (X,Y ),

if {(Ax)n} ∈ Y , whenever x = {xk} ∈ X. In the sequel, m, c respectively denote
the ultrametric Banach spaces of bounded and convergent sequences.

The following results are well-known.

Theorem 1.1. A = (ank) ∈ (m,m) if and only if

sup
n,k

|ank| < ∞.(1.1)

Theorem 1.2. [5] A = (ank) ∈ (m, c) if and only if

lim
k→∞

ank = 0, n = 0, 1, 2, . . . ;(1.2)

and

lim
n→∞

sup
k≥0

|an+1,k − ank| = 0.(1.3)

2. Boundedness with speed λ (or λ-boundedness), λ-boundedness by
the matrix A (or Aλ-boundedness), characterization of the matrix

class (mλ,mµ)

Definition 2.1. Let λ = {λn} be a sequence in K such that

0 < |λn| ↗ ∞, n → ∞.

A sequence x = {xk} is said to be bounded with speed λ or λ-bounded if x =
{xk} ∈ c with lim

k→∞
xk = s and {λn(xn − s)} is bounded.

Let mλ denote the set of all λ-bounded sequences in K. Note that mλ ⊂ c.

Definition 2.2. A sequence x = {xk} in K is said to be λ-bounded by the matrix
A or Aλ-bounded if

A(x) = {(Ax)n} ∈ mλ.

The set of all Aλ-bounded sequences is denoted by mλ
A. Here again, we note

that

mλ
A ⊂ cA,

where cA denotes the convergence field of A.
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In the sequel, for each k = 0, 1, 2, . . . , let

ek = {0, 0, . . . , 0, 1, 0, . . . },

1 occurring in the kth place and 0 elsewhere, i.e., ek = {ejk}∞j=0, where

ejk =

{
1, if j = k;

0, if j ̸= k;

and
e = {1, 1, 1, . . . }.

Let µ = {µn} be a sequence in K such that

0 < |µn| ↗ ∞, n → ∞.

We now have the following characterization of the matrix class (mλ,mµ).

Theorem 2.1. Let A = (ank) be an infinite matrix. Then A ∈ (mλ,mµ) if and
only if

lim
n→∞

ank = ak, k = 0, 1, 2, . . . ;(2.1)

A(e) ∈ mµ;(2.2)

lim
k→∞

ank
λk

= 0, n = 0, 1, 2, . . . ;(2.3)

lim
n→∞

(
sup
k≥0

∣∣∣∣an+1,k − ank
λk

∣∣∣∣) = 0;(2.4)

and

sup
n,k

∣∣∣∣µn(ank − ak)

λk

∣∣∣∣ < ∞.(2.5)

Proof. Necessity. Let A = (ank) ∈ (mλ,mµ). Note that for k = 0, 1, 2, . . . , ek ∈ mλ

and so A(ek) ∈ mµ. Thus A(ek) ∈ c.
Consequently,

lim
n→∞

ank = ak, k = 0, 1, 2, . . . , i.e., (2.1) holds.

We again note that e ∈ mλ and so

A(e) ∈ mµ, i.e., (2.2) holds.
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Let, now, x = {xk} ∈ mλ. Hence x = {xk} ∈ c. Let lim
k→∞

xk = s. Let

βk = λk(xk − s), k = 0, 1, 2, . . . .

Then {βk} ∈ m. Now,

(Ax)n =

∞∑
k=0

ankxk

=

∞∑
k=0

ank

(
βk

λk
+ s

)

=

∞∑
k=0

ank
λk

βk + s

∞∑
k=0

ank.(2.6)

In view of (2.2), { ∞∑
k=0

ank

}∞

n=0

∈ mµ

and so { ∞∑
k=0

ank

}∞

n=0

∈ c.

Thus

lim
n→∞

∞∑
k=0

ank = a (say).(2.7)

Since {(Ax)n} ∈ c and {βk} ∈ m, using (2.6) and (2.7), it follows that the infinite
matrix (

ank
λk

)
∈ (m, c).

Consequently, (2.3) and (2.4) hold, using Theorem 1.2. By hypothesis, {(Ax)n} ∈
mµ and so {(Ax)n} ∈ c. Let lim

n→∞
(Ax)n = y. Now,

y = lim
n→∞

(Ax)n

= lim
n→∞

( ∞∑
k=0

ank
λk

βk + s

∞∑
k=0

ank

)

=

∞∑
k=0

ak
λk

βk + sa, using (2.4) and (2.7).(2.8)

In view of (2.6) and (2.8), we have,

(Ax)n − y =

∞∑
k=0

ank − ak
λk

βk + s

( ∞∑
k=0

ank − a

)
.
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Hence

µn[(Ax)n − y] =

∞∑
k=0

µn(ank − ak)

λk
βk

+sµn

( ∞∑
k=0

ank − a

)
.(2.9)

Since {(Ax)n}, A(e) ∈ mµ,

{µn[(Ax)n − y]} ,

{
µn

( ∞∑
k=0

ank − a

)}
∈ m.

Already {βk} ∈ m. Thus, the infinite matrix(
µn(ank − ak)

λk

)
∈ (m,m).

Using Theorem 1.1,

sup
n,k

∣∣∣∣µn(ank − ak)

λk

∣∣∣∣ < ∞, i.e., (2.5) holds.

Sufficiency. Let (2.1) - (2.5) hold. Then, using (2.2), (2.7) holds. Let x = {xk} ∈
mλ, lim

k→∞
xk = s, βk = λk(xk − s). Then {βk} ∈ m. Using (2.3) and (2.4), the

infinite matrix (
ank
λk

)
∈ (m, c).

Using (2.6) and (2.7), it now follows that {(Ax)n} ∈ c. Let

lim
n→∞

(Ax)n = y.

So (2.8) and (2.9) hold.
In view of (2.5), the infinite matrix(

µn(ank − ak)

λk

)
∈ (m,m).

Since {βk} ∈ m, { ∞∑
k=0

µn(ank − ak)

λk
βk

}∞

n=0

∈ m.

Using (2.2), {
µn

( ∞∑
k=0

ank − a

)}∞

n=0

∈ m.
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In view of (2.9),
{µn[(Ax)n − y]}∞n=0 ∈ m.

Consequently,
{(Ax)n} ∈ mµ.

This completes the proof of the theorem.

Definition 2.3. We say that an infinite matrixA = (ank) preserves λ-boundedness
if A ∈ (mλ,mλ).

Definition 2.4. An infinite matrix A = (ank) is said to be regular if A ∈ (c, c)
and lim

n→∞
(Ax)n = lim

k→∞
xk, x = {xk} ∈ c.

The following result is an immediate consequence of Theorem 2.1.

Theorem 2.2. Let A = (ank) be a regular matrix. Then A preserves λ-boundedness
if and only if

sup
n,k

∣∣∣∣λnank
λk

∣∣∣∣ < ∞.(2.10)

Definition 2.5. [8] A sequence {xk} in K = Qp, the p-adic field for a prime p, is
said to be Y -summable to ℓ if

xn + xn−1

2
→ ℓ, n → ∞.

Note that the Y -method is defined by the infinite matrix A = (ank), where,

ank =


1

2
, if k = n− 1, n;

= 0, otherwise.

It is easy to check that the Y -method is regular. In addition, using (2.10), we can
easily check that the Y -method preserves λ-boundedness if and only if{

λn

λn−1

}
∈ m.

For instance, choose λn = 1
pn , n = 0, 1, 2, . . . in Qp. Then

0 < |λn|p =
1

|p|np
↗ ∞, n → ∞,

where | · |p is the p-adic valuation. Now,∣∣∣∣ λn

λn−1

∣∣∣∣
p

=

∣∣∣∣ 1/pn

1/pn−1

∣∣∣∣
p

=
1

|p|p
, n = 0, 1, 2, . . . ,
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so that {
λn

λn−1

}
∈ m.

Consequently, the Y -method preserves λ-boundedness for the above choice of λ =
{λn}.

For the sake of completeness, we recall the following definition from [7]. Let, as
usual, λ = {λn} be a sequence in K such that

0 < |λn| ↗ ∞, n → ∞.

Definition 2.6. A sequence {xn} in K is said to be convergent with speed λ or
λ-convergent if {xn} ∈ c with lim

n→∞
xn = s and

lim
n→∞

λn(xn − s) exists.

Let cλ denote the set of all λ-convergent sequences in K. By definition,

cλ ⊂ mλ ⊂ c.

We now have the following result, the proof of which is very similar to the proof
of Theorem 2.1.

Theorem 2.3. A = ank ∈ (cλ,mµ) if and only if A ∈ (mλ,mµ). In other words,
A ∈ (cλ,mµ) if and only if (2.1) – (2.5) are satisfied.
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