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Abstract. We introduce the bi-rotational hypersurface x(u, v, w) in the four dimen-
sional Euclidean geometry E4. We obtain the i-th curvatures of the hypersurface. More-
over, we consider the Laplace–Beltrami operator of the bi-rotational hypersurface sat-
isfying ∆x =Ax for some 4× 4 matrix A.
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1. Introduction

With the works of Chen [13, 14, 15, 16], the studies of the submanifolds of the
finite type whose immersion into Em (or Em

ν ) by using a finite number of eigenfunc-
tions of their Laplacian have been studied for almost a half century.

Takahashi [46] gave that a connected Euclidean submanifold is of 1-type, iff it
is either minimal in Em or minimal in some hypersphere of Em. Submanifolds of
the finite type closest in simplicity to the minimal ones are the 2-type spherical
submanifolds (where spherical means into a sphere). Some results of the 2-type
spherical closed submanifolds were given by [9, 10, 14]. Garay studied [28] an ex-
tension of Takahashi’s theorem in Em. Cheng and Yau introduced the hypersurfaces
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with constant scalar curvature; Chen and Piccinni [17] focused on the submanifolds
with finite type Gauss map in Em. Dursun [23] considered the hypersurfaces with
pointwise 1-type Gauss map in En+1.

In E3; Levi-Civita [40] worked the isoparametric surface family; Takahashi [46]
proved the minimal surfaces and the spheres are the only surfaces satisfying the
condition ∆r = λr, λ ∈ R; Ferrandez et al. [25] found the surfaces satisfying
∆H = AH, A ∈ Mat(3, 3) are either minimal, or an open piece of sphere or of a
right circular cylinder; Choi and Kim [20] classified the minimal helicoid in terms
of the pointwise 1-type Gauss map of the first kind; Garay [27] studied the certain
class of the finite type surfaces of revolution; Dillen et al. [21] obtained that the only
surfaces satisfying ∆r = Ar + B, A ∈ Mat(3, 3), B ∈ Mat(3, 1) are the minimal
surfaces, the spheres and the circular cylinders; Stamatakis and Zoubi [45] focused
the surfaces of revolution satisfying ∆IIIx = Ax; Senoussi and Bekkar [44] gave the
helicoidal surfaces M2 which are of the finite type with respect to the fundamental
forms I, II and III, i.e., their position vector field r(u, v) satisfies the condition
∆Jr = Ar, J = I, II, III, where A ∈ Mat(3, 3); Kim et al. [37] introduced the
Cheng–Yau’s operator and the Gauss map of the surfaces of revolution.

In E4; Moore [41, 42] considered the general rotational surfaces; Hasanis and
Vlachos [34] studied the hypersurfaces with the harmonic mean curvature vector
field; Cheng and Wan [18] gave the complete hypersurfaces with CMC; Kim and
Turgay [38] worked the surfaces with L1-pointwise 1-type Gauss map; Arslan et al.
[3] introduced the Vranceanu surface with the pointwise 1-type Gauss map; Arslan
et al. [4] worked the generalized rotational surfaces; Arslan et al. [5] considered the
tensor product surfaces with the pointwıse 1-type Gauss map; Kahraman Aksoyak
and Yaylı [35] studied the rotational surfaces with the pointwise 1-type Gauss map;
Güler et al. [32] introduced the helicoidal hypersurfaces; Güler et al. [31] worked the
Gauss map and the third Laplace–Beltrami operator of the rotational hypersurface;
Güler and Turgay [33] studied the Cheng–Yau’s operator and the Gauss map of the
rotational hypersurfaces; Güler [30] obtained the rotational hypersurfaces satisfying
∆IR = AR, where A ∈ Mat(4, 4). He [29] also worked the fundamental form IV
and the curvature formulas of the hypersphere.

In Minkowski 4-space E4
1; Ganchev and Milousheva [26] studied the analogue of

surfaces of [41, 42]; Arvanitoyeorgos et al. [8] indicated if the mean curvature vector
field of M3

1 satisfies the equation ∆H = αH (α a constant), then M3
1 has CMC;

Arslan and Milousheva introduced the meridian surfaces of elliptic or hyperbolic
type with the pointwise 1-type Gauss map; Turgay considered some classifications
of a Lorentzian surfaces with the finite type Gauss map; Dursun and Turgay worked
the space-like surfaces with the pointwise 1-type Gauss map. Kahraman Aksoyak
and Yaylı [36] gave the general rotational surfaces with the pointwise 1-type Gauss
map in E4

2. Bektaş, Canfes, and Dursun [11] obtained surfaces in a pseudo-sphere
with 2-type pseudo-spherical Gauss map in E5

2. They [12] also considered pseudo-
spherical submanifolds with the 1-type pseudo-spherical Gauss map. Arslan et al.
[7] introduced the rotational λ-hypersurfaces in the Euclidean spaces.

We consider the bi-rotational hypersurface in the four dimensional Euclidean
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geometry E4. In Section 2, we give some basic notions of the four dimensional
Euclidean geometry. We consider the curvature formulas of the hypersurfaces in
E4, in Section 3. In Section 4, we define the bi-rotational hypersurface. We study
the bi-rotational hypersurface satisfying ∆x =Ax for some 4× 4 matrix A in E4 in
Section 5. Finally, we give some results in the last section.

2. Preliminaries

In this section, giving some of basic facts and definitions, we describe the nota-
tions used the whole paper. Let Em denote the Euclidean m-space with the canon-

ical Euclidean metric tensor given by g̃ = ⟨ , ⟩ =
m∑
i=1

dx2
i , where (x1, x2, . . . , xm)

is a rectangular coordinate system in Em. Consider an m-dimensional Riemannian
submanifold of the space Em. We denote the Levi-Civita connections [40] of the

manifold M̃, and its submanifold M of Em by ∇̃, ∇, respectively. We shall use
letters X,Y, Z,W (resp., ξ, η) to denote vectors fields tangent (resp., normal) to M .
The Gauss and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h(X,Y ),

∇̃Xξ = −Aξ(X) +DXξ,

where h, D and A are the second fundamental form, the normal connection and the
shape operator of M , respectively.

For each ξ ∈ T⊥
p M , the shape operator Aξ is a symmetric endomorphism of the

tangent space TpM at p ∈ M . The shape operator and the second fundamental
form are related by

⟨h(X,Y ), ξ⟩ = ⟨AξX,Y ⟩ .

The Gauss and Codazzi equations are given, respectively, by

⟨R(X,Y, )Z,W ⟩ = ⟨h(Y,Z), h(X,W )⟩ − ⟨h(X,Z), h(Y,W )⟩,
(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z),

where R, RD are the curvature tensors associated with connections ∇ and D,
respectively, and ∇̄h is defined by

(∇̄Xh)(Y,Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ).

2.1. Hypersurfaces of Euclidean space

Now, let M be an oriented hypersurface in the Euclidean space En+1, S its shape
operator (i.e., the Weingarten map) and x its position vector. We consider a local
orthonormal frame field {e1, e2, . . . , en} of consisting of principal directions of M
corresponding from the principal curvature ki for i = 1, 2, . . . n. Let the dual basis
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of this frame field be {θ1, θ2, . . . , θn}. Then, the first structural equation of Cartan
is

dθi =

n∑
i=1

θj ∧ ωij , i, j = 1, 2, . . . , n,(2.1)

where ωij denotes the connection forms corresponding to the chosen frame field. We

denote the Levi-Civita connection of M in En+1 by ∇ and ∇̃, respectively. Then,
from the Codazzi equation (2.1), we have

ei(kj) = ωij(ej)(ki − kj),

ωij(el)(ki − kj) = ωil(ej)(ki − kl)

for distinct i, j, l = 1, 2, . . . , n.

We put sj = σj(k1, k2, . . . , kn), where σj is the j-th elementary symmetric func-
tion given by

σj(a1, a2, . . . , an) =
∑

1≤i1<i2<...<ij≤n

ai1ai2 . . . aij .

We use the following notation

rji = σj(k1, k2, . . . , ki−1, ki+1, ki+2, . . . , kn).

By the definition, we have r0i = 1 and sn+1 = sn+2 = · · · = 0. We call the function
sk as the k-th mean curvature of M . We would like to note that functions H = 1

ns1
and K = sn are called the mean curvature and the Gauss-Kronecker curvature of
M , respectively. In particular, M is said to be j-minimal if sj ≡ 0 on M .

In En+1, to find the i-th curvature formulas Ci (The curvature formulas some-
times are represented as the mean curvature Hi, and sometimes as the Gaussian
curvature Ki by different writers, such as [1] and [39]. We will call it just the i-th
curvature Ci in this paper.), where i = 0, . . . , n, firstly, we use the characteristic
polynomial of S:

PS(λ) = 0 = det(S− λIn) =
n∑

k=0

(−1)
k
skλ

n−k,

where i = 0, . . . , n, In denotes the identity matrix of order n. Then, we get the
curvature formulas

(
n
i

)
Ci = si. Clearly,

(
n
0

)
C0 = s0 = 1 (by definition),

(
n
1

)
C1 =

s1, . . . ,
(
n
n

)
Cn = sn = K.

For a Euclidean submanifold x: M −→ Em, the immersion (M,x) is called the
finite type, if x can be expressed as a finite sum of eigenfunctions of the Laplacian
∆ of (M,x) , i.e., x = x0 +

∑k
i=1 xi, where x0 is a constant map, x1, . . . , xk non-

constant maps, and ∆xi = λixi, λi ∈ R, i = 1, . . . , k. If λi are different, M is called
k-type. See [14] for details.
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Let x = x(u, v, w) be an isometric immersion from M3 ⊂ E3 to E4. The triple
vector product of −→x = (x1, x2, x3, x4), −→y = (y1, y2, y3, y4), −→z = (z1, z2, z3, z4) of
E4 is defined by

−→x ×−→y ×−→z = det


e1 e2 e3 e4
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

 .

For a hypersurface x in 4-space, (gij) and (hij)3×3 , are the first, and the second
fundamental form matrices, respectively, g11 = xu · xu, g12 = xu · xv, g22 = xv · xv,
g13 = xu ·xv, g23 = xv ·xw, g33 = xw ·xw, h11 = xuu ·G, h12 = xuv ·G, h22 = xvv ·G,
h13 = xuw ·G, h23 = xvw ·G, h33 = xww ·G. Here,

G =
xu × xv × xw

∥xu × xv × xw∥
(2.2)

is the unit normal (i.e. the Gauss map) of the hypersurface x. The product matrix

(gij)
−1·(hij) gives the matrix of the shape operator S of the hypersurface x in

4-space. See [31, 32, 33] for details.

3. i-th Curvatures

In E4, to compute the i-th mean curvature formula Ci, where i = 0, 1, 2, 3, we
use the characteristic polynomial PS(λ) = aλ3 + bλ2 + cλ + d = 0, and PS(λ) =
det(S− λI3) = 0.

Then, we obtain C0 = 1 (by definition),
(
3
1

)
H = − b

a ,
(
3
2

)
C2 = c

a ,
(
3
3

)
C3 = K =

− d
a . Therefore, we find the following i-th curvature folmulas in 4-space:

Theorem 3.1. Any hypersurface x in E4 has the following curvature formulas,
C0 = 1 (by definition),

C1 =

 (g11h22 + g22h11 − 2g12h12)g33 + (g11g22 − g212)h33

−g223h11 − g213h22 − 2(g13h13g22 − g23h13g12
−g13h23g12 + g11g23h23 − g13g23h12)


3 [(g11g22 − g212)g33 − g11g223 + 2g12g13g23 − g22g213]

,(3.1)

C2 =

 (g11h22 + g22h11 − 2g12h12)h33 +
(
h11h22 − g212

)
g33

−g11h
2
23 − g22h

2
13 − 2 (g13h13h22 − g23h13h12

−g13h23h12 + g23h23h11 − h13h23g12)


3 [(g11g22 − g212)g33 − g11g223 + 2g12g13g23 − g22g213]

,(3.2)

C3 =

(
h11h22 − h2

12

)
h33 − h11h

2
23 + 2h12h13h23 − h22h

2
13

(g11g22 − g212)g33 − g11g223 + 2g12g13g23 − g22g213
.(3.3)

See [29] for details.
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4. Bi-Rotational Hypersurface

In this section, we define the rotational hypersurface, then find its differential
geometric properties in the Euclidean 4-space E4. We would like to note that
the definition of the rotational hypersurfaces in the Riemannian space forms were
defined in [22]. A rotational hypersurface M ⊂ En+1 generated by a curve γ
around an axis that does not meet γ is obtained by taking the orbit of γ under
those orthogonal transformations of En+1 that leaves r pointwise fixed (See [22,
Remark 2.3]).

By using the curve γ(u) = (f(u), 0,g(u), 0) with the rotation matrix
cos v − sin v 0 0
sin v cos v 0 0
0 0 cosw − sinw
0 0 sinw cosw

 ,

we give the following definition.

Definition 4.1. A bi-rotational hypersurface in E4 is defined by

x(u, v, w) = (f(u) cos v, f(u) sin v,g(u) cosw,g(u) sinw) ,(4.1)

where f ,g are the differentiable functions, and 0 ≤ v, w ≤ 2π.

Remark 4.1. While f(u) = g(u) = 1 in (4.1), we obtain the Clifford torus in E4. See
[2, 48] for details. Moreover, when v = w in (4.1), we get the tensor product surface in
E4. See [5, 43] for details.

Considering the first derivatives of (4.1) with respect to u, v, w, respectively,

xu =


f ′ cos v
f ′ sin v
g′ cosw
g′ sinw

 , xv =


−f sin v
f cos v

0
0

 , xw =


0
0

−g sinw
g cosw

 ,

we find the following first quantities of (4.1):

(gij) = diag
(
f ′2 + g′2, f2,g2

)
.

Here,

g = det (gij) = f2g2
(
f ′2 + g′2) .

Using the (2.2) , we get the following Gauss map of the bi-rotational hypersurface
(4.1):

G =
1

(f ′2 + g′2)
1/2

(−g′ cos v,−g′ sin v, f ′ cosw, f ′ sinw) ,(4.2)
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With the help of the second derivatives with respect to u, v, w of the (4.1), and
the Gauss map (4.2) of the bi-rotational hypersurface (4.1), we have the following
second quantities

(hij) = diag

(
f ′g′′ − g′f ′′

(f ′2 + g′2)
1/2

,
fg′

(f ′2 + g′2)
1/2

,− gf ′

(f ′2 + g′2)
1/2

)
.(4.3)

So, we get

h = det (hij) = − fgf ′g′ (f ′g′′ − f ′′g′)

(f ′2 + g′2)
3/2

.

By using (4.2) and (4.3), we calculate the following shape operator matrix of the
bi-rotational hypersurface (4.1):

S = diag

(
f ′g′′ − g′f ′′

(f ′2 + g′2)
3/2

,
g′

f (f ′2 + g′2)
1/2

,− f ′

g (f ′2 + g′2)
1/2

)
.

Finally, by using (3.1), (3.2) and (3.3) , with (4.2), (4.3), respectively, we find the
following curvatures of the bi-rotational hypersurface (4.1):

Corollary 4.1. Let x : M3 −→ E4 be an immersion given by (4.1). The x has
the following curvatures

C1 =
(f ′g′′ − g′f ′′) fg−

(
f ′2 + g′2) (ff ′ − gg′)

3fg (f ′2 + g′2)
3/2

,

C2 =

(
ff ′ − gg′) (g′f ′′ − f ′g′′)−

(
f ′2 + g′2) f ′g′

3fg (f ′2 + g′2)
2 ,

C3 = − f ′g′ (f ′g′′ − g′f ′′)

fg (f ′2 + g′2)
5/2

.

Example 4.1. Let x : M3 −→ E4 be an immersion given by (4.1). When the curve γ
of x is parametrized by the arc length, and f(u) = cosu, g(u) = sinu, the bi-rotational
hypersurface has the following curvatures

Ci = 1,

where i = 1, 2, 3.

Example 4.2. Let x : M3 −→ E4 be an immersion given by (4.1). When the curve
γ of x is parametrized with f(u) = g(u) = u√

2
, then bi-rotational hypersurface has the

following

C1 = 0,

C2 = − 1

3u2
,

C3 = 0.
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5. Bi-Rotational Hypersurface Satisfying ∆x =Ax

In this section, we give the Laplace–Beltrami operator of a smooth function.
Then, calculate the Laplace–Beltrami operator of the bi-rotational hypersurface.

The inverse of the matrix

(gij) =

 g11 g12 g13
g21 g22 g23
g31 g32 g33


is given by

1

g

 g22g33 − g23g32 − (g12g33 − g13g32) g12g23 − g13g22
− (g21g33 − g31g23) g11g33 − g13g31 − (g11g23 − g21g13)
g21g32 − g22g31 − (g11g32 − g12g31) g11g22 − g12g21

 ,

where

g = det (gij)

= g11g22g33 − g11g23g32 + g12g31g23 − g12g21g33 + g21g13g32 − g13g22g31.

Definition 5.1. On D ⊂ R3 the Laplace–Beltrami operator of a smooth function
ϕ = ϕ(x1, x2, x3) |D of class C3 with respect to the first fundamental form is the
operator ∆ defined by

∆ϕ =
1

g1/2

3∑
i,j=1

∂

∂xi

(
g1/2gij

∂ϕ

∂xj

)
,(5.1)

where
(
gij
)
= (gkl)

−1
, and g = det (gij) .

Clearly, we can write (5.1) as follows

∆ϕ =
1

|g|1/2


∂

∂x1

(
|g|1/2 g11 ∂ϕ

∂x1

)
+ ∂

∂x1

(
|g|1/2 g12 ∂ϕ

∂x2

)
+ ∂

∂x1

(
|g|1/2 g13 ∂ϕ

∂x3

)
+ ∂

∂x2

(
|g|1/2 g21 ∂ϕ

∂x1

)
+ ∂

∂x2

(
|g|1/2 g22 ∂ϕ

∂x2

)
+ ∂

∂x2

(
|g|1/2 g23 ∂ϕ

∂x3

)
+ ∂

∂x3

(
|g|1/2 g31 ∂ϕ

∂x1

)
+ ∂

∂x3

(
|g|1/2 g32 ∂ϕ

∂x2

)
+ ∂

∂x3

(
|g|1/2 g33 ∂ϕ

∂x3

)
 .

When i ̸= j, gij = 0 for any rotational hypersurface. Hence, we can re-write ∆ϕ as
follows

∆ϕ =
1

|g|1/2

{
∂

∂x1

(
|g|1/2 g11 ∂ϕ

∂x1

)
+

∂

∂x2

(
|g|1/2 g22 ∂ϕ

∂x2

)
+

∂

∂x3

(
|g|1/2 g33 ∂ϕ

∂x3

)}
.

Therefore, more clear form of the Laplace–Beltrami operator of any rotational hy-
persurface x(u, v, w) is given by

∆x =
1

|g|1/2

{
∂

∂u

(
g22g33

|g|1/2
xu

)
+

∂

∂v

(
g11g33

|g|1/2
xv

)
+

∂

∂w

(
g11g22

|g|1/2
xw

)}
.(5.2)

Finally, by taking the derivatives of the g22g33
|g|1/2 xu,

g11g33
|g|1/2 xv,

g11g22
|g|1/2 xw, with respect

to u, v, w, respectively, and substituting them into (5.2) , we have the following.
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Theorem 5.1. Let x : M3 −→ E4 be an immersion given by (4.1). The Laplace–
Beltrami operator of the bi-rotational hypersurface x(u, v, w) is given by

∆x =


∆x1

∆x2

∆x3

∆x4

 =


f(u) cos v
f(u) sin v
g(u) cosw
g(u) sinw

 ,

where

f(u) =

(
f ′g + fg′) f ′
fg (f ′2 + g′2)

− (f ′f ′′ + g′g′′) f ′

(f ′2 + g′2)
2 +

f ′′

f ′2 + g′2 − 1

f
,

g(u) =

(
f ′g + fg′)g′

fg (f ′2 + g′2)
− (f ′f ′′ + g′g′′)g′

(f ′2 + g′2)
2 +

g′′

f ′2 + g′2 − 1

g
.

6. Conclusion

Taking into account all findings, we serve the following.

Corollary 6.1. Let x : M3−→ E4 be an immersion given by (4.1). The bi-
rotational hypersurface x satisfies ∆x = Ax, where

A = diag

(
f

f
I2,

g

g
I2
)
,

and A ∈ Mat (4, 4) , I2 is the identity matrix.

Corollary 6.2. Let x : M3−→ E4 be an immersion given by (4.1). When the
curve γ of the bi-rotational hypersurface x is parametrized by the arc length, the x
holds ∆x = Bx, where B = diag (pI2, qI2) , and

p (u) =
f ′′

f
+

f ′ (log (fg))
′

f
− 1

f2
,

q (u) =
g′′

g
+

g′ (log (fg))
′

g
− 1

g2
,

with B ∈ Mat (4, 4) , I2 is the identity matrix.

Example 6.1. Let x : M3−→ E4 be an immersion given by (4.1). When the curve γ
of the x is parametrized by f(u) = cosu, g(u) = sinu, the bi-rotational hypersurface x
supplies ∆x = Cx, where C = diag (aI2, bI2) , a(u) = −3, b(u) = −3, and I2 is the identity
matrix. Briefly, C = −3I4, where I4 is the identity matrix.

Example 6.2. Let x : M3−→ E4 be an immersion given by (4.1). When the curve
γ of the x is parametrized by f(u) = g(u) = u√

2
, the bi-rotational hypersurface x has

∆x = Dx, where D = diag (cI2, dI2) = O4, and c(u) = 0, d(u) = 0. Hence, the bi-
rotational hypersurface is the 1-minimal harmonic hypersurface.
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Example 6.3. Taking the hypersphere S3(r) :=
{
ξ ∈E4 | ⟨ξ, ξ⟩ = r2

}
(for radius r > 0)

as

ξ(u, v, w) = (r cosu cos v, r cosu sin v, r sinu cosw, r sinu sinw) ,(6.1)

we get S = 1
r
I3, and we obtain the following curvatures

C0 = 1, C1 = H =
1

r
, C2 =

1

r2
, C3 = K =

1

r3
.

Here, (C1)
2 = C2, C1C2 = C3, (C1)

3 = C3, i.e., H
3 = K. Therefore, the hypersurface (6.1)

is the bi-rotational umbilical hypersphere.

REFERENCES
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33. E. Güler and N. C. Turgay: Cheng–Yau operator and Gauss map of rotational
hypersurfaces in 4-space. Mediterr. J. Math. 16(3) (2019), 1–16.

34. Th. Hasanis and Th. Vlachos: Hypersurfaces in E4 with harmonic mean curvature
vector field. Math. Nachr. 172 (1995), 145–169.

35. F. Kahraman Aksoyak and Y. Yaylı: Flat rotational surfaces with pointwise 1-type
Gauss map in E4. Honam Math. J. 38(2) (2016), 305–316.
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