BI-ROTATIONAL HYPERSURFACE WITH $\Delta \mathrm{x}=\mathcal{A} \mathrm{x}$ IN 4-SPACE

Erhan Güler ${ }^{1}$, Yusuf Yaylı ${ }^{2}$ and Hasan Hilmi Hacısalihoğlu ${ }^{3}$
${ }^{1}$ Faculty of Sciences, Department of Mathematics Bartın University, 74100 Bartın, Türkiye
${ }^{2}$ Faculty of Sciences, Department of Mathematics Ankara University, 06100 Ankara, Türkiye
${ }^{3}$ Faculty of Sciences, Department of Mathematics
Bilecik Şeyh Edebali University, 11230 Bilecik, Türkiye

Abstract

We introduce the bi-rotational hypersurface $\mathbf{x}(u, v, w)$ in the four dimensional Euclidean geometry \mathbb{E}^{4}. We obtain the i-th curvatures of the hypersurface. Moreover, we consider the Laplace-Beltrami operator of the bi-rotational hypersurface satisfying $\Delta \mathbf{x}=\mathcal{A} \mathbf{x}$ for some 4×4 matrix \mathcal{A}. Key words: bi-rotational hypersurface, Eucledian geometry, curvative formulas.

1. Introduction

With the works of Chen $[13,14,15,16]$, the studies of the submanifolds of the finite type whose immersion into \mathbb{E}^{m} (or \mathbb{E}_{ν}^{m}) by using a finite number of eigenfunctions of their Laplacian have been studied for almost a half century.

Takahashi [46] gave that a connected Euclidean submanifold is of 1-type, iff it is either minimal in \mathbb{E}^{m} or minimal in some hypersphere of \mathbb{E}^{m}. Submanifolds of the finite type closest in simplicity to the minimal ones are the 2-type spherical submanifolds (where spherical means into a sphere). Some results of the 2-type spherical closed submanifolds were given by $[9,10,14]$. Garay studied [28] an extension of Takahashi's theorem in \mathbb{E}^{m}. Cheng and Yau introduced the hypersurfaces

[^0]with constant scalar curvature; Chen and Piccinni [17] focused on the submanifolds with finite type Gauss map in \mathbb{E}^{m}. Dursun [23] considered the hypersurfaces with pointwise 1 -type Gauss map in \mathbb{E}^{n+1}.

In \mathbb{E}^{3}; Levi-Civita [40] worked the isoparametric surface family; Takahashi [46] proved the minimal surfaces and the spheres are the only surfaces satisfying the condition $\Delta r=\lambda r, \lambda \in \mathbb{R}$; Ferrandez et al. [25] found the surfaces satisfying $\Delta H=A H, A \in \operatorname{Mat}(3,3)$ are either minimal, or an open piece of sphere or of a right circular cylinder; Choi and Kim [20] classified the minimal helicoid in terms of the pointwise 1-type Gauss map of the first kind; Garay [27] studied the certain class of the finite type surfaces of revolution; Dillen et al. [21] obtained that the only surfaces satisfying $\Delta r=A r+B, A \in \operatorname{Mat}(3,3), B \in \operatorname{Mat}(3,1)$ are the minimal surfaces, the spheres and the circular cylinders; Stamatakis and Zoubi [45] focused the surfaces of revolution satisfying $\Delta^{I I I} x=A x$; Senoussi and Bekkar [44] gave the helicoidal surfaces M^{2} which are of the finite type with respect to the fundamental forms $I, I I$ and $I I I$, i.e., their position vector field $r(u, v)$ satisfies the condition $\Delta^{J} r=A r, J=I, I I, I I I$, where $A \in \operatorname{Mat}(3,3)$; Kim et al. [37] introduced the Cheng-Yau's operator and the Gauss map of the surfaces of revolution.

In \mathbb{E}^{4}; Moore [41, 42] considered the general rotational surfaces; Hasanis and Vlachos [34] studied the hypersurfaces with the harmonic mean curvature vector field; Cheng and Wan [18] gave the complete hypersurfaces with CMC; Kim and Turgay [38] worked the surfaces with L_{1}-pointwise 1-type Gauss map; Arslan et al. [3] introduced the Vranceanu surface with the pointwise 1-type Gauss map; Arslan et al. [4] worked the generalized rotational surfaces; Arslan et al. [5] considered the tensor product surfaces with the pointwise 1-type Gauss map; Kahraman Aksoyak and Yayll [35] studied the rotational surfaces with the pointwise 1-type Gauss map; Güler et al. [32] introduced the helicoidal hypersurfaces; Güler et al. [31] worked the Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface; Güler and Turgay [33] studied the Cheng-Yau's operator and the Gauss map of the rotational hypersurfaces; Güler [30] obtained the rotational hypersurfaces satisfying $\Delta^{I} R=A R$, where $A \in \operatorname{Mat}(4,4)$. He [29] also worked the fundamental form $I V$ and the curvature formulas of the hypersphere.

In Minkowski 4-space \mathbb{E}_{1}^{4}; Ganchev and Milousheva [26] studied the analogue of surfaces of [41, 42]; Arvanitoyeorgos et al. [8] indicated if the mean curvature vector field of M_{1}^{3} satisfies the equation $\Delta H=\alpha H$ (α a constant), then M_{1}^{3} has CMC; Arslan and Milousheva introduced the meridian surfaces of elliptic or hyperbolic type with the pointwise 1-type Gauss map; Turgay considered some classifications of a Lorentzian surfaces with the finite type Gauss map; Dursun and Turgay worked the space-like surfaces with the pointwise 1-type Gauss map. Kahraman Aksoyak and Yayll [36] gave the general rotational surfaces with the pointwise 1-type Gauss map in \mathbb{E}_{2}^{4}. Bektaş, Canfes, and Dursun [11] obtained surfaces in a pseudo-sphere with 2-type pseudo-spherical Gauss map in \mathbb{E}_{2}^{5}. They [12] also considered pseudospherical submanifolds with the 1-type pseudo-spherical Gauss map. Arslan et al. [7] introduced the rotational λ-hypersurfaces in the Euclidean spaces.

We consider the bi-rotational hypersurface in the four dimensional Euclidean
geometry \mathbb{E}^{4}. In Section 2 , we give some basic notions of the four dimensional Euclidean geometry. We consider the curvature formulas of the hypersurfaces in \mathbb{E}^{4}, in Section 3. In Section 4, we define the bi-rotational hypersurface. We study the bi-rotational hypersurface satisfying $\Delta \mathbf{x}=\mathcal{A} \mathbf{x}$ for some 4×4 matrix \mathcal{A} in \mathbb{E}^{4} in Section 5. Finally, we give some results in the last section.

2. Preliminaries

In this section, giving some of basic facts and definitions, we describe the notations used the whole paper. Let \mathbb{E}^{m} denote the Euclidean m-space with the canonical Euclidean metric tensor given by $\widetilde{g}=\langle\rangle=,\sum_{i=1}^{m} d x_{i}^{2}$, where $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is a rectangular coordinate system in \mathbb{E}^{m}. Consider an m-dimensional Riemannian submanifold of the space \mathbb{E}^{m}. We denote the Levi-Civita connections [40] of the manifold \widetilde{M}, and its submanifold M of \mathbb{E}^{m} by $\widetilde{\nabla}, \nabla$, respectively. We shall use letters X, Y, Z, W (resp., ξ, η) to denote vectors fields tangent (resp., normal) to M. The Gauss and Weingarten formulas are given, respectively, by

$$
\begin{aligned}
\widetilde{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y), \\
\widetilde{\nabla}_{X} \xi & =-A_{\xi}(X)+D_{X} \xi,
\end{aligned}
$$

where h, D and A are the second fundamental form, the normal connection and the shape operator of M, respectively.

For each $\xi \in T_{p}^{\perp} M$, the shape operator A_{ξ} is a symmetric endomorphism of the tangent space $T_{p} M$ at $p \in M$. The shape operator and the second fundamental form are related by

$$
\langle h(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle .
$$

The Gauss and Codazzi equations are given, respectively, by

$$
\begin{aligned}
\langle R(X, Y,) Z, W\rangle & =\langle h(Y, Z), h(X, W)\rangle-\langle h(X, Z), h(Y, W)\rangle \\
\left(\bar{\nabla}_{X} h\right)(Y, Z) & =\left(\bar{\nabla}_{Y} h\right)(X, Z),
\end{aligned}
$$

where R, R^{D} are the curvature tensors associated with connections ∇ and D, respectively, and $\bar{\nabla} h$ is defined by

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

2.1. Hypersurfaces of Euclidean space

Now, let M be an oriented hypersurface in the Euclidean space $\mathbb{E}^{n+1}, \mathbf{S}$ its shape operator (i.e., the Weingarten map) and x its position vector. We consider a local orthonormal frame field $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of consisting of principal directions of M corresponding from the principal curvature k_{i} for $i=1,2, \ldots n$. Let the dual basis
of this frame field be $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}$. Then, the first structural equation of Cartan is

$$
\begin{equation*}
d \theta_{i}=\sum_{i=1}^{n} \theta_{j} \wedge \omega_{i j}, \quad i, j=1,2, \ldots, n \tag{2.1}
\end{equation*}
$$

where $\omega_{i j}$ denotes the connection forms corresponding to the chosen frame field. We denote the Levi-Civita connection of M in \mathbb{E}^{n+1} by ∇ and $\widetilde{\nabla}$, respectively. Then, from the Codazzi equation (2.1), we have

$$
\begin{aligned}
e_{i}\left(k_{j}\right) & =\omega_{i j}\left(e_{j}\right)\left(k_{i}-k_{j}\right), \\
\omega_{i j}\left(e_{l}\right)\left(k_{i}-k_{j}\right) & =\omega_{i l}\left(e_{j}\right)\left(k_{i}-k_{l}\right)
\end{aligned}
$$

for distinct $i, j, l=1,2, \ldots, n$.
We put $s_{j}=\sigma_{j}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$, where σ_{j} is the j-th elementary symmetric function given by

$$
\sigma_{j}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{j} \leq n} a_{i_{1}} a_{i_{2}} \ldots a_{i_{j}} .
$$

We use the following notation

$$
r_{i}^{j}=\sigma_{j}\left(k_{1}, k_{2}, \ldots, k_{i-1}, k_{i+1}, k_{i+2}, \ldots, k_{n}\right) .
$$

By the definition, we have $r_{i}^{0}=1$ and $s_{n+1}=s_{n+2}=\cdots=0$. We call the function s_{k} as the k-th mean curvature of M. We would like to note that functions $H=\frac{1}{n} s_{1}$ and $K=s_{n}$ are called the mean curvature and the Gauss-Kronecker curvature of M, respectively. In particular, M is said to be j-minimal if $s_{j} \equiv 0$ on M.

In \mathbb{E}^{n+1}, to find the i-th curvature formulas \mathfrak{C}_{i} (The curvature formulas sometimes are represented as the mean curvature H_{i}, and sometimes as the Gaussian curvature K_{i} by different writers, such as [1] and [39]. We will call it just the i-th curvature \mathfrak{C}_{i} in this paper.), where $i=0, \ldots, n$, firstly, we use the characteristic polynomial of \mathbf{S} :

$$
P_{\mathbf{S}}(\lambda)=0=\operatorname{det}\left(\mathbf{S}-\lambda \mathcal{I}_{n}\right)=\sum_{k=0}^{n}(-1)^{k} s_{k} \lambda^{n-k}
$$

where $i=0, \ldots, n, \mathcal{I}_{n}$ denotes the identity matrix of order n. Then, we get the curvature formulas $\binom{n}{i} \mathfrak{C}_{i}=s_{i}$. Clearly, $\binom{n}{0} \mathfrak{C}_{0}=s_{0}=1$ (by definition), $\binom{n}{1} \mathfrak{C}_{1}=$ $s_{1}, \ldots,\binom{n}{n} \mathfrak{C}_{n}=s_{n}=K$.

For a Euclidean submanifold $x: M \longrightarrow \mathbb{E}^{m}$, the immersion (M, x) is called the finite type, if x can be expressed as a finite sum of eigenfunctions of the Laplacian Δ of (M, x), i.e., $x=x_{0}+\sum_{i=1}^{k} x_{i}$, where x_{0} is a constant map, x_{1}, \ldots, x_{k} nonconstant maps, and $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{i} \in \mathbb{R}, i=1, \ldots, k$. If λ_{i} are different, M is called k-type. See [14] for details.

Let $\mathbf{x}=\mathbf{x}(u, v, w)$ be an isometric immersion from $M^{3} \subset \mathbb{E}^{3}$ to \mathbb{E}^{4}. The triple vector product of $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \vec{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ of \mathbb{E}^{4} is defined by

$$
\vec{x} \times \vec{y} \times \vec{z}=\operatorname{det}\left(\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & e_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right)
$$

For a hypersurface \mathbf{x} in 4-space, $\left(g_{i j}\right)$ and $\left(h_{i j}\right)_{3 \times 3}$, are the first, and the second fundamental form matrices, respectively, $g_{11}=\mathbf{x}_{u} \cdot \mathbf{x}_{u}, g_{12}=\mathbf{x}_{u} \cdot \mathbf{x}_{v}, g_{22}=\mathbf{x}_{v} \cdot \mathbf{x}_{v}$, $g_{13}=\mathbf{x}_{u} \cdot \mathbf{x}_{v}, g_{23}=\mathbf{x}_{v} \cdot \mathbf{x}_{w}, g_{33}=\mathbf{x}_{w} \cdot \mathbf{x}_{w}, h_{11}=\mathbf{x}_{u u} \cdot G, h_{12}=\mathbf{x}_{u v} \cdot G, h_{22}=\mathbf{x}_{v v} \cdot G$, $h_{13}=\mathbf{x}_{u w} \cdot G, h_{23}=\mathbf{x}_{v w} \cdot G, h_{33}=\mathbf{x}_{w w} \cdot G$. Here,

$$
\begin{equation*}
G=\frac{\mathbf{x}_{u} \times \mathbf{x}_{v} \times \mathbf{x}_{w}}{\left\|\mathbf{x}_{u} \times \mathbf{x}_{v} \times \mathbf{x}_{w}\right\|} \tag{2.2}
\end{equation*}
$$

is the unit normal (i.e. the Gauss map) of the hypersurface \mathbf{x}. The product matrix $\left(g_{i j}\right)^{-1} \cdot\left(h_{i j}\right)$ gives the matrix of the shape operator \mathbf{S} of the hypersurface \mathbf{x} in 4 -space. See [31, 32, 33] for details.

3. i-th Curvatures

In \mathbb{E}^{4}, to compute the i-th mean curvature formula \mathfrak{C}_{i}, where $i=0,1,2,3$, we use the characteristic polynomial $P_{\mathbf{S}}(\lambda)=a \lambda^{3}+b \lambda^{2}+c \lambda+d=0$, and $P_{\mathbf{S}}(\lambda)=$ $\operatorname{det}\left(\mathbf{S}-\lambda \mathcal{I}_{3}\right)=0$.

Then, we obtain $\mathfrak{C}_{0}=1$ (by definition), $\binom{3}{1} H=-\frac{b}{a},\binom{3}{2} \mathfrak{C}_{2}=\frac{c}{a},\binom{3}{3} \mathfrak{C}_{3}=K=$ $-\frac{d}{a}$. Therefore, we find the following i-th curvature folmulas in 4 -space:

Theorem 3.1. Any hypersurface \mathbf{x} in \mathbb{E}^{4} has the following curvature formulas, $\mathfrak{C}_{0}=1$ (by definition),

$$
\begin{align*}
\mathfrak{C}_{1}= & \frac{\left\{\begin{array}{c}
\left(g_{11} h_{22}+g_{22} h_{11}-2 g_{12} h_{12}\right) g_{33}+\left(g_{11} g_{22}-g_{12}^{2}\right) h_{33} \\
-g_{23}^{2} h_{11}-g_{13}^{2} h_{22}-2\left(g_{13} h_{13} g_{22}-g_{23} h_{13} g_{12}\right. \\
\left.-g_{13} h_{23} g_{12}+g_{11} g_{23} h_{23}-g_{13} g_{23} h_{12}\right)
\end{array}\right\}}{3\left[\left(g_{11} g_{22}-g_{12}^{2}\right) g_{33}-g_{11} g_{23}^{2}+2 g_{12} g_{13} g_{23}-g_{22} g_{13}^{2}\right]}, \tag{3.1}\\
\mathfrak{C}_{2}= & \frac{\left\{\begin{array}{c}
\left(g_{11} h_{22}+g_{22} h_{11}-2 g_{12} h_{12}\right) h_{33}+\left(h_{11} h_{22}-g_{12}^{2}\right) g_{33} \\
-g_{11} h_{23}^{2}-g_{22} h_{13}^{2}-2\left(g_{13} h_{13} h_{22}-g_{23} h_{13} h_{12}\right. \\
\left.-g_{13} h_{23} h_{12}+g_{23} h_{23} h_{11}-h_{13} h_{23} g_{12}\right)
\end{array}\right\}}{3\left[\left(g_{11} g_{22}-g_{12}^{2}\right) g_{33}-g_{11} g_{23}^{2}+2 g_{12} g_{13} g_{23}-g_{22} g_{13}^{2}\right]}, \tag{3.2}\\
\mathfrak{C}_{3}= & \frac{\left(h_{11} h_{22}-h_{12}^{2}\right) h_{33}-h_{11} h_{23}^{2}+2 h_{12} h_{13} h_{23}-h_{22} h_{13}^{2}}{\left(g_{11} g_{22}-g_{12}^{2}\right) g_{33}-g_{11} g_{23}^{2}+2 g_{12} g_{13} g_{23}-g_{22} g_{13}^{2}} \tag{3.3}
\end{align*}
$$

See [29] for details.

4. Bi-Rotational Hypersurface

In this section, we define the rotational hypersurface, then find its differential geometric properties in the Euclidean 4 -space \mathbb{E}^{4}. We would like to note that the definition of the rotational hypersurfaces in the Riemannian space forms were defined in [22]. A rotational hypersurface $M \subset \mathbb{E}^{n+1}$ generated by a curve γ around an axis that does not meet γ is obtained by taking the orbit of γ under those orthogonal transformations of \mathbb{E}^{n+1} that leaves \mathfrak{r} pointwise fixed (See [22, Remark 2.3]).

By using the curve $\gamma(u)=(\mathbf{f}(u), 0, \mathbf{g}(u), 0)$ with the rotation matrix

$$
\left(\begin{array}{cccc}
\cos v & -\sin v & 0 & 0 \\
\sin v & \cos v & 0 & 0 \\
0 & 0 & \cos w & -\sin w \\
0 & 0 & \sin w & \cos w
\end{array}\right)
$$

we give the following definition.
Definition 4.1. A bi-rotational hypersurface in \mathbb{E}^{4} is defined by

$$
\begin{equation*}
\mathbf{x}(u, v, w)=(\mathbf{f}(u) \cos v, \mathbf{f}(u) \sin v, \mathbf{g}(u) \cos w, \mathbf{g}(u) \sin w) \tag{4.1}
\end{equation*}
$$

where \mathbf{f}, \mathbf{g} are the differentiable functions, and $0 \leq v, w \leq 2 \pi$.

Remark 4.1. While $\mathbf{f}(u)=\mathbf{g}(u)=1$ in (4.1), we obtain the Clifford torus in \mathbb{E}^{4}. See [2, 48] for details. Moreover, when $v=w$ in (4.1), we get the tensor product surface in \mathbb{E}^{4}. See $[5,43]$ for details.

Considering the first derivatives of (4.1) with respect to u, v, w, respectively,

$$
\mathbf{x}_{u}=\left(\begin{array}{c}
\mathbf{f}^{\prime} \cos v \\
\mathbf{f}^{\prime} \sin v \\
\mathbf{g}^{\prime} \cos w \\
\mathbf{g}^{\prime} \sin w
\end{array}\right), \mathbf{x}_{v}=\left(\begin{array}{c}
-\mathbf{f} \sin v \\
\mathbf{f} \cos v \\
0 \\
0
\end{array}\right), \mathbf{x}_{w}=\left(\begin{array}{c}
0 \\
0 \\
-\mathbf{g} \sin w \\
\mathbf{g} \cos w
\end{array}\right)
$$

we find the following first quantities of (4.1):

$$
\left(g_{i j}\right)=\operatorname{diag}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}, \mathbf{f}^{2}, \mathbf{g}^{2}\right)
$$

Here,

$$
g=\operatorname{det}\left(g_{i j}\right)=\mathbf{f}^{2} \mathbf{g}^{2}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right) .
$$

Using the (2.2), we get the following Gauss map of the bi-rotational hypersurface (4.1):

$$
\begin{equation*}
G=\frac{1}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}}\left(-\mathbf{g}^{\prime} \cos v,-\mathbf{g}^{\prime} \sin v, \mathbf{f}^{\prime} \cos w, \mathbf{f}^{\prime} \sin w\right) \tag{4.2}
\end{equation*}
$$

With the help of the second derivatives with respect to u, v, w of the (4.1), and the Gauss map (4.2) of the bi-rotational hypersurface (4.1), we have the following second quantities

$$
\begin{equation*}
\left(h_{i j}\right)=\operatorname{diag}\left(\frac{\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime}}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}}, \frac{\mathbf{f g}^{\prime}}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}},-\frac{\mathbf{g f}^{\prime}}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}}\right) \tag{4.3}
\end{equation*}
$$

So, we get

$$
h=\operatorname{det}\left(h_{i j}\right)=-\frac{\mathbf{f g f}^{\prime} \mathbf{g}^{\prime}\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{f}^{\prime \prime} \mathbf{g}^{\prime}\right)}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{3 / 2}}
$$

By using (4.2) and (4.3), we calculate the following shape operator matrix of the bi-rotational hypersurface (4.1):

$$
\mathbf{S}=\operatorname{diag}\left(\frac{\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime}}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{3 / 2}}, \frac{\mathbf{g}^{\prime}}{\mathbf{f}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}},-\frac{\mathbf{f}^{\prime}}{\mathbf{g}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}}\right)
$$

Finally, by using (3.1), (3.2) and (3.3), with (4.2), (4.3), respectively, we find the following curvatures of the bi-rotational hypersurface (4.1):

Corollary 4.1. Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). The \mathbf{x} has the following curvatures

$$
\begin{aligned}
& \mathfrak{C}_{1}=\frac{\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime}\right) \mathbf{f g}-\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)\left(\mathbf{f f}^{\prime}-\mathbf{g g}^{\prime}\right)}{3 \mathbf{f g}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{3 / 2}} \\
& \mathfrak{C}_{2}=\frac{\left(\mathbf{f f}^{\prime}-\mathbf{g g}^{\prime}\right)\left(\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime}-\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}\right)-\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right) \mathbf{f}^{\prime} \mathbf{g}^{\prime}}{3 \mathbf{f g}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{2}} \\
& \mathfrak{C}_{3}=-\frac{\mathbf{f}^{\prime} \mathbf{g}^{\prime}\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime}\right)}{\mathbf{f g}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{5 / 2}}
\end{aligned}
$$

Example 4.1. Let $\mathrm{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). When the curve γ of \mathbf{x} is parametrized by the arc length, and $\mathbf{f}(u)=\cos u, \mathbf{g}(u)=\sin u$, the bi-rotational hypersurface has the following curvatures

$$
\mathfrak{C}_{i}=1,
$$

where $i=1,2,3$.
Example 4.2. Let $\mathrm{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). When the curve γ of \mathbf{x} is parametrized with $\mathbf{f}(u)=\mathbf{g}(u)=\frac{u}{\sqrt{2}}$, then bi-rotational hypersurface has the following

$$
\begin{aligned}
\mathfrak{C}_{1} & =0 \\
\mathfrak{C}_{2} & =-\frac{1}{3 u^{2}}, \\
\mathfrak{C}_{3} & =0
\end{aligned}
$$

5. Bi-Rotational Hypersurface Satisfying $\Delta \mathrm{x}=\mathcal{A} \mathrm{x}$

In this section, we give the Laplace-Beltrami operator of a smooth function. Then, calculate the Laplace-Beltrami operator of the bi-rotational hypersurface.

The inverse of the matrix

$$
\left(g_{i j}\right)=\left(\begin{array}{lll}
g_{11} & g_{12} & g_{13} \\
g_{21} & g_{22} & g_{23} \\
g_{31} & g_{32} & g_{33}
\end{array}\right)
$$

is given by

$$
\frac{1}{g}\left(\begin{array}{ccc}
g_{22} g_{33}-g_{23} g_{32} & -\left(g_{12} g_{33}-g_{13} g_{32}\right) & g_{12} g_{23}-g_{13} g_{22} \\
-\left(g_{21} g_{33}-g_{31} g_{23}\right) & g_{11} g_{33}-g_{13} g_{31} & -\left(g_{11} g_{23}-g_{21} g_{13}\right) \\
g_{21} g_{32}-g_{22} g_{31} & -\left(g_{11} g_{32}-g_{12} g_{31}\right) & g_{11} g_{22}-g_{12} g_{21}
\end{array}\right)
$$

where

$$
\begin{aligned}
g & =\operatorname{det}\left(g_{i j}\right) \\
& =g_{11} g_{22} g_{33}-g_{11} g_{23} g_{32}+g_{12} g_{31} g_{23}-g_{12} g_{21} g_{33}+g_{21} g_{13} g_{32}-g_{13} g_{22} g_{31}
\end{aligned}
$$

Definition 5.1. On $\mathbf{D} \subset \mathbb{R}^{3}$ the Laplace-Beltrami operator of a smooth function $\phi=\left.\phi\left(x^{1}, x^{2}, x^{3}\right)\right|_{\mathbf{D}}$ of class C^{3} with respect to the first fundamental form is the operator Δ defined by

$$
\begin{equation*}
\Delta \phi=\frac{1}{g^{1 / 2}} \sum_{i, j=1}^{3} \frac{\partial}{\partial x^{i}}\left(g^{1 / 2} g^{i j} \frac{\partial \phi}{\partial x^{j}}\right), \tag{5.1}
\end{equation*}
$$

where $\left(g^{i j}\right)=\left(g_{k l}\right)^{-1}$, and $g=\operatorname{det}\left(g_{i j}\right)$.
Clearly, we can write (5.1) as follows
$\Delta \phi=\frac{1}{|g|^{1 / 2}}\left\{\begin{array}{c}\frac{\partial}{\partial x^{1}}\left(|g|^{1 / 2} g^{11} \frac{\partial \phi}{\partial x^{1}}\right)+\frac{\partial}{\partial x^{1}}\left(|g|^{1 / 2} g^{12} \frac{\partial \phi}{\partial x^{2}}\right)+\frac{\partial}{\partial x^{1}}\left(|g|^{1 / 2} g^{13} \frac{\partial \phi}{\partial x^{3}}\right) \\ +\frac{\partial}{\partial x^{2}}\left(|g|^{1 / 2} g^{21} \frac{\partial \phi}{\partial x^{1}}\right)+\frac{\partial}{\partial x^{2}}\left(|g|^{1 / 2} g^{22} \frac{\partial \phi}{\partial x^{2}}\right)+\frac{\partial}{\partial x^{2}}\left(|g|^{1 / 2} g^{23} \frac{\partial \phi}{\partial x^{3}}\right) \\ +\frac{\partial}{\partial x^{3}}\left(|g|^{1 / 2} g^{31} \frac{\partial \phi}{\partial x^{1}}\right)+\frac{\partial}{\partial x^{3}}\left(|g|^{1 / 2} g^{32} \frac{\partial \phi}{\partial x^{2}}\right)+\frac{\partial}{\partial x^{3}}\left(|g|^{1 / 2} g^{33} \frac{\partial \phi}{\partial x^{3}}\right)\end{array}\right\}$.
When $i \neq j, g_{i j}=0$ for any rotational hypersurface. Hence, we can re-write $\Delta \phi$ as follows
$\Delta \phi=\frac{1}{|g|^{1 / 2}}\left\{\frac{\partial}{\partial x^{1}}\left(|g|^{1 / 2} g^{11} \frac{\partial \phi}{\partial x^{1}}\right)+\frac{\partial}{\partial x^{2}}\left(|g|^{1 / 2} g^{22} \frac{\partial \phi}{\partial x^{2}}\right)+\frac{\partial}{\partial x^{3}}\left(|g|^{1 / 2} g^{33} \frac{\partial \phi}{\partial x^{3}}\right)\right\}$.
Therefore, more clear form of the Laplace-Beltrami operator of any rotational hypersurface $\mathbf{x}(u, v, w)$ is given by
(5.2) $\Delta \mathbf{x}=\frac{1}{|g|^{1 / 2}}\left\{\frac{\partial}{\partial u}\left(\frac{g_{22} g_{33}}{|g|^{1 / 2}} \mathbf{x}_{u}\right)+\frac{\partial}{\partial v}\left(\frac{g_{11} g_{33}}{|g|^{1 / 2}} \mathbf{x}_{v}\right)+\frac{\partial}{\partial w}\left(\frac{g_{11} g_{22}}{|g|^{1 / 2}} \mathbf{x}_{w}\right)\right\}$.

Finally, by taking the derivatives of the $\frac{g_{22} g_{33}}{|g|^{1 / 2}} \mathbf{x}_{u}, \frac{g_{11} g_{33}}{|g|^{1 / 2}} \mathbf{x}_{v}, \frac{g_{11} g_{22}}{|g|^{1 / 2}} \mathbf{x}_{w}$, with respect to u, v, w, respectively, and substituting them into (5.2), we have the following.

Theorem 5.1. Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). The LaplaceBeltrami operator of the bi-rotational hypersurface $\mathbf{x}(u, v, w)$ is given by

$$
\Delta \mathbf{x}=\left(\begin{array}{c}
\Delta \mathbf{x}_{1} \\
\Delta \mathbf{x}_{2} \\
\Delta \mathbf{x}_{3} \\
\Delta \mathbf{x}_{4}
\end{array}\right)=\left(\begin{array}{c}
\mathfrak{f}(u) \cos v \\
\mathfrak{f}(u) \sin v \\
\mathfrak{g}(u) \cos w \\
\mathfrak{g}(u) \sin w
\end{array}\right)
$$

where

$$
\begin{aligned}
\mathfrak{f}(u) & =\frac{\left(\mathbf{f}^{\prime} \mathbf{g}+\mathbf{f g}^{\prime}\right) \mathbf{f}^{\prime}}{\mathbf{f g}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)}-\frac{\left(\mathbf{f}^{\prime} \mathbf{f}^{\prime \prime}+\mathbf{g}^{\prime} \mathbf{g}^{\prime \prime}\right) \mathbf{f}^{\prime}}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{2}}+\frac{\mathbf{f}^{\prime \prime}}{\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}}-\frac{1}{\mathbf{f}} \\
\mathfrak{g}(u) & =\frac{\left(\mathbf{f}^{\prime} \mathbf{g}+\mathbf{f g}^{\prime}\right) \mathbf{g}^{\prime}}{\mathbf{f g}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)}-\frac{\left(\mathbf{f}^{\prime} \mathbf{f}^{\prime \prime}+\mathbf{g}^{\prime} \mathbf{g}^{\prime \prime}\right) \mathbf{g}^{\prime}}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{2}}+\frac{\mathbf{g}^{\prime \prime}}{\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}}-\frac{1}{\mathbf{g}}
\end{aligned}
$$

6. Conclusion

Taking into account all findings, we serve the following.
Corollary 6.1. Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). The birotational hypersurface \mathbf{x} satisfies $\Delta \mathbf{x}=\mathcal{A} \mathbf{x}$, where

$$
\mathcal{A}=\operatorname{diag}\left(\frac{\mathfrak{f}}{\mathbf{f}} \mathcal{I}_{2}, \frac{\mathfrak{g}}{\mathbf{g}} \mathcal{I}_{2}\right)
$$

and $\mathcal{A} \in \operatorname{Mat}(4,4), \mathcal{I}_{2}$ is the identity matrix.
Corollary 6.2. Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). When the curve γ of the bi-rotational hypersurface \mathbf{x} is parametrized by the arc length, the \mathbf{x} holds $\Delta \mathbf{x}=\mathcal{B} \mathbf{x}$, where $\mathcal{B}=\operatorname{diag}\left(\mathfrak{p I}_{2}, \mathfrak{q} \mathcal{I}_{2}\right)$, and

$$
\begin{aligned}
\mathfrak{p}(u) & =\frac{\mathbf{f}^{\prime \prime}}{\mathbf{f}}+\frac{\mathbf{f}^{\prime}(\log (\mathbf{f g}))^{\prime}}{\mathbf{f}}-\frac{1}{\mathbf{f}^{2}} \\
\mathfrak{q}(u) & =\frac{\mathbf{g}^{\prime \prime}}{\mathbf{g}}+\frac{\mathbf{g}^{\prime}(\log (\mathbf{f g}))^{\prime}}{\mathbf{g}}-\frac{1}{\mathbf{g}^{2}},
\end{aligned}
$$

with $\mathcal{B} \in \operatorname{Mat}(4,4), \mathcal{I}_{2}$ is the identity matrix.
Example 6.1. Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). When the curve γ of the \mathbf{x} is parametrized by $\mathbf{f}(u)=\cos u, \mathbf{g}(u)=\sin u$, the bi-rotational hypersurface \mathbf{x} supplies $\Delta \mathbf{x}=\mathcal{C} \mathbf{x}$, where $\mathcal{C}=\operatorname{diag}\left(\mathfrak{a} \mathcal{I}_{2}, \mathfrak{b} \mathcal{I}_{2}\right), \mathfrak{a}(u)=-3, \mathfrak{b}(u)=-3$, and \mathcal{I}_{2} is the identity matrix. Briefly, $\mathcal{C}=-3 \mathcal{I}_{4}$, where \mathcal{I}_{4} is the identity matrix.

Example 6.2. Let $\mathrm{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). When the curve γ of the \mathbf{x} is parametrized by $\mathbf{f}(u)=\mathbf{g}(u)=\frac{u}{\sqrt{2}}$, the bi-rotational hypersurface \mathbf{x} has $\Delta \mathbf{x}=\mathcal{D} \mathbf{x}$, where $\mathcal{D}=\operatorname{diag}\left(\mathfrak{c}_{2}, \mathfrak{I}_{2}\right)=O_{4}$, and $\mathfrak{c}(u)=0, \mathfrak{d}(u)=0$. Hence, the birotational hypersurface is the 1-minimal harmonic hypersurface.

Example 6.3. Taking the hypersphere $S^{3}(r):=\left\{\xi \in \mathbb{E}^{4} \mid\langle\xi, \xi\rangle=r^{2}\right\}$ (for radius $r>0$) as

$$
\begin{equation*}
\xi(u, v, w)=(r \cos u \cos v, r \cos u \sin v, r \sin u \cos w, r \sin u \sin w), \tag{6.1}
\end{equation*}
$$

we get $\mathbf{S}=\frac{1}{r} \mathcal{I}_{3}$, and we obtain the following curvatures

$$
\mathfrak{C}_{0}=1, \mathfrak{C}_{1}=H=\frac{1}{r}, \mathfrak{C}_{2}=\frac{1}{r^{2}}, \mathfrak{C}_{3}=K=\frac{1}{r^{3}} .
$$

Here, $\left(\mathfrak{C}_{1}\right)^{2}=\mathfrak{C}_{2}, \mathfrak{C}_{1} \mathfrak{C}_{2}=\mathfrak{C}_{3},\left(\mathfrak{C}_{1}\right)^{3}=\mathfrak{C}_{3}$, i.e., $H^{3}=K$. Therefore, the hypersurface (6.1) is the bi-rotational umbilical hypersphere.

REFERENCES

1. L. J. Alias and N. Gürbüz: An extension of Takashi theorem for the linearized operators of the highest order mean curvatures. Geom. Dedicata 121 (2006), 113-127.
2. Y. Aminov: The Geometry of Submanifolds. Gordon and Breach Sci. Pub., Amsterdam, 2001.
3. K. Arslan, B. Bulca, B. K. Bayram, Y. H. Kim, C. Murathan, and G. Öztürk: Vranceanu surface in \mathbb{E}^{4} with pointwise 1-type Gauss map. Indian J. Pure Appl. Math. 42(1) (2011), 41-51.
4. K. Arslan, B. K. Bayram, B. Bulca, and G. Öztürk: Generalized rotation surfaces in \mathbb{E}^{4}. Results Math. 61(3) (2012), 315-327.
5. K. Arslan, B. Bulca, B. Kiliç, Y. H. Kim, C. Murathan, and G. Öztürk: Tensor product surfaces with pointwrse 1-type Gauss map. Bull. Korean Math. Soc. 48(3) (2011), 601-609.
6. K. Arslan and V. Milousheva: Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space. Taiwanese J. Math. 20(2) (2016), 311-332.
7. K. Arslan, A. Sütveren, and B. Bulca: Rotational λ-hypersurfaces in Euclidean spaces. Creat. Math. Inform. 30(1) (2021), 29-40.
8. A. Arvanitoyeorgos, G. Kaimakamis, and M. Magid: Lorentz hypersurfaces in \mathbb{E}_{1}^{4} satisfying $\Delta H=\alpha H$. Illinois J. Math. 53(2) (2009), 581-590.
9. M. Barros and B. Y. Chen: Stationary 2-type surfaces in a hypersphere. J. Math. Soc. Japan. 39(4) (1987), 627-648.
10. M. Barros and O. J. Garay: 2-type surfaces in S^{3}. Geom. Dedicata 24(3) (1987), 329-336.
11. B. Bektaş, E. Ö. Canfes, and U. Dursun: Classification of surfaces in a pseudosphere with 2-type pseudo-spherical Gauss map. Math. Nachr. 290(16) (2017), 25122523.
12. B. Bektaş, E. Ö. Canfes, and U. Dursun: Pseudo-spherical submanifolds with 1-type pseudospherical Gauss map. Results Math. 71(3), 867-887 (2017).
13. B. Y. Chen: On submanifolds of finite type. Soochow J. Math. 9 (1983), 65-81.
14. B. Y. Chen: Total Mean Curvature and Submanifolds of Finite Type. World Scientific, Singapore, 1984.
15. B. Y. CHEN: Finite Type Submanifolds and Generalizations. University of Rome, Rome, 1985.
16. B. Y. CHEN: Finite type submanifolds in pseudo-Euclidean spaces and applications. Kodai Math. J. 8(3) (1985), 358-374.
17. B. Y. Chen and P. Piccinni: Submanifolds with finite type Gauss map. Bull. Aust. Math. Soc. 35 (1987), 161-186.
18. Q. M. Cheng and Q. R. Wan: Complete hypersurfaces of \mathbb{R}^{4} with constant mean curvature. Monatsh. Math. 118 (1994), 171-204.
19. S. Y. Cheng and S. T. Yau: Hypersurfaces with constant scalar curvature. Math. Ann. 225, 195-204 (1977).
20. M. Choi and Y. H. Kim: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 38 (2001), 753-761.
21. F. Dillen, J. Pas, and L. Verstraelen: On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 13 (1990), 10-21.
22. M. P. Do Carmo and M. Dajczer: Rotation hypersurfaces in spaces of constant curvature. Trans. Amer. Math. Soc. 277 (1983), 685-709.
23. U. Dursun: Hypersurfaces with pointwise 1-type Gauss map. Taiwanese J. Math. 11(5) (2007), 1407-1416.
24. U. Dursun and N. C. Turgay: Space-like surfaces in Minkowski space \mathbb{E}_{1}^{4} with pointwise 1-type Gauss map. Ukrainian Math. J. 71(1) (2019), 64-80.
25. A. Ferrandez, O. J. Garay, and P. Lucas: On a certain class of conformally at Euclidean hypersurfaces. In: Proceedings of a Conference on Global Analysis and Global Differential Geometry. Springer, Berlin, 1990, pp. 48-54.
26. G. Ganchev and V. Milousheva: General rotational surfaces in the 4-dimensional Minkowski space. Turk. J. Math. 38 (2014), 883-895.
27. O. J. Garay: On a certain class of finite type surfaces of revolution. Kodai Math. J. 11 (1988), 25-31.
28. O. J. Garay: An extension of Takahashi's theorem. Geom. Dedicata 34 (1990), 105112.
29. E. GÜLER: Fundamental form IV and curvature formulas of the hypersphere. Malaya J. Mat. 8(4) (2020), 2008-2011.
30. E. GÜLER: Rotational hypersurfaces satisfying $\Delta^{I} R=A R$ in the four-dimensional Euclidean space. J. Polytech. 24(2) (2021), 517-520.
31. E. GÜLer, H. H. Hacisalihoğlu, and Y. H. Kim: The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry $\mathbf{1 0}(9)$ (2018), 1-12.
32. E. GÜLER, M. Magid, and Y. Yayli: Laplace-Beltrami operator of a helicoidal hypersurface in four-space. J. Geom. Symmetry Phys. 41 (2016), 77-95.
33. E. GÜLER and N. C. Turgay: Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space. Mediterr. J. Math. 16(3) (2019), 1-16.
34. Th. Hasanis and Th. Vlachos: Hypersurfaces in \mathbb{E}^{4} with harmonic mean curvature vector field. Math. Nachr. 172 (1995), 145-169.
35. F. Kahraman Aksoyak and Y. Yayli: Flat rotational surfaces with pointwise 1-type Gauss map in \mathbb{E}^{4}. Honam Math. J. 38(2) (2016), 305-316.
36. F. Kahraman Aksoyak and Y. Yayli: General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space \mathbb{E}_{2}^{4}. Indian J. Pure Appl. Math. 46(1) (2015), 107-118.
37. D. S. Kim, J. R. Kim, and Y. H. Kim: Cheng-Yau operator and Gauss map of surfaces of revolution. Bull. Malays. Math. Sci. Soc. 39(4) (2016), 1319-1327.
38. Y. H. Kim and N. C. Turgay: Surfaces in \mathbb{E}^{4} with L_{1}-pointwise 1-type Gauss map. Bull. Korean Math. Soc. 50(3), (2013), 935-949.
39. W. Kühnel: Differential Geometry. Curves-Surfaces-Manifolds. Third ed. Translated from the 2013 German ed. AMS, Providence, RI, 2015.
40. T. Levi-Civita: Famiglie di superficie isoparametriche nellordinario spacio euclideo. Rend. Acad. Lincei 26 (1937), 355-362.
41. C. Moore: Surfaces of rotation in a space of four dimensions. Ann. Math. 21 (1919), 81-93.
42. C. Moore: Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26 (1920), 454-460.
43. S. Özkaldi and Y. Yayli: Tensor product surfaces in \mathbb{R}^{4} and Lie groups. Bull. Malays. Math. Sci. Soc. (2)33(1) (2010), 69-77.
44. B. Senoussi and M. Bekkar: Helicoidal surfaces with $\Delta^{J} r=A r$ in 3-dimensional Euclidean space. Stud. Univ. Babeş-Bolyai Math. 60(3) (2015), 437-448.
45. S. Stamatakis and H. Zoubi: Surfaces of revolution satisfying $\Delta^{I I I} x=A x$. J. Geom. Graph. 14(2) (2010), 181-186.
46. T. Takahashi: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18 (1966), 380-385.
47. N. C. Turgay: Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space. J. Aust. Math. Soc. 99(3) (2015), 415-427.
48. D. W. Yoon: Some properties of the Clifford torus as rotation surfaces. Indian J. Pure Appl. Math. 34(6) (2003), 907-915.

[^0]: Received December 04, 2021, accepted: Jun 07, 2022
 Communicated by Mića Stanković
 Corresponding Author: Erhan Güler, Faculty of Sciences, Department of Mathematics, Bartın University, 74100 Bartın, Türkiye | E-mail: eguler@bartin.edu.tr
 2010 Mathematics Subject Classification. Primary 53B25; Secondary 53C40

