
FACTA UNIVERSITATIS (NIŠ)
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Abstract. In this study, we define spacelike curves in R4
2 and characterize such curves

in terms of Frenet frame. Also, we examine some special spacelike curves of R4
2, taking

into account their curvatures. In addition, we study spacelike slant helices, spacelike
B2 slant helices in R4

2. And then we obtain an approximate solution for spacelike-B2

slant helix.
Key words: spacelike curves, slant helices, approximate solution.

1. Introduction

The curves are the common denominator of many different vital necessities such
as nature, art, technology and science. It is geometrically important to describe the
behavior of the curve in the vicinity a point on the curve. For this, we introduce a
frame of mutually orthogonal vectors and curvatures. Thanks to these curvatures
and frames that are shaped differently in different spaces, the curves become special.
For example, ”if all the curvatures κr(s), (r = 1, ..., n − 1) of the curve nowhere
vanish in I ⊂ R, then the curve is called a non-degenerate curve in En” or ”a helix
in E3 is a curve whose tangent vector make a constant angle with a fixed direction”
[20]. On the other hand, the curves are generally, presented in parametric format,
and arc-length parameter is preferred as the parameter in theoretical treatments
because of its simplicity of expression. For practical uses, the parameter is changed
from arc length s to a more manageable variable parameter t, which monotonically
increases with arc length [10].
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Izumiya and Takeuchi obtained a characterization of slant helices, which are the
basis of our study, in E3 [12]. Kula and Yaylı worked on spherical images of the
slant helices [15]. Önder et al. presented a new type of the slant helices in Euclidean
4-space and called it the B2-slant helix [18]. In 2009, Gök et al. transported the
slant helices of E3 to En, n > 3, which they called them Vn slant helix and obtained
some characterizations of Vn-slant helix in En [9]. The studies have been carried
out on the spacelike W -curve in E3

1 , the ccr-curves in En and the spherical curves
[11], [19]. On the other hand, different approximate solution methods based on
matrices for differential equations characterizing special curves were presented by
Aydın et al [7, 8]. In addition, the issue of investigating the existence of solutions
of different types of equations is still up to date [3, 6, 16].

There are many studies about the special curves we have discussed in this study,
but there is no study done in R4

2 and according to the frame we use [13]. The study
is important in this respect.

2. Preliminaries

This section contains the definitions and terms that will be used in the following
parts of the study.

Let γ : I ⊂ R → Em be a regular curve, (∥γ′∥ ̸= 0). Then γ is called a Frenet
curve of osculating order k; (2 ≤ k ≤ m) if γ′, γ′′,..., γ(k) are linearly independent
and γ′, γ′′,..., γ(k+1) linearly dependent [22]. In this case, Im(γ) lies in an k-
dimensional Euclidean subspace of Em. If k = m the Frenet curve γ is called a
generic curve [22, 5].

Definition 2.1. A generic curve in E4 for which κ1, κ2, κ3 are constant is called
W -curve or (generalized) helix in E4 [14].

Definition 2.2. A slope curve in E4 is the curve that satisfies the relations κ2

κ1
= α

and κ3

κ1
= β for the curvatures κ1 ̸= 0, κ2 and κ3, where α and β are nonzero

constants [4].

Definition 2.3. A curve γ : I → Em has constant curvature ratios (ccr-curve)
if all the quotients κi+1

κi
are constant [17]. Frenet curve of rank 4 with constant

curvature ratios is called a ccr-curve in E4 (see, [19]). We remark that a regular
curve in E4 is a ccr-curve if κ2

κ1
and κ3

κ2
are constant functions.

A regular curve in En is said to have constant curvature ratios if the ratios of
the consecutive curvatures are constant [17].

Definition 2.4. A regular curve γ = γ(s) : I ⊂ R → En is named spherical if it
lies on a (n− 1)-sphere S(n−1) of Rn [5].

Definition 2.5. If the tangent vector T of a curve makes a fixed angle with a unit
vector U of E4 then this curve is named a general helix (or inclined curve) in E4

[19].
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Definition 2.6. A unit speed curve γ : I → E4 is called slant helix if its unit
principal normal vector N makes a constant angle with a fixed direction [1].

R4
2, 4-dimensional semi-Euclidean space with index 2 is the standart vector space

equipped with an indefinite flat metric ⟨, ⟩ defined by

⟨, ⟩ = da21 + da22 − da23 − da24,

where (a1, a2, a3, a4) is a rectangular coordinate system of R4
2. A vector w in R4

2

is called a timelike, spacelike or null (lightlike) if respectively hold ⟨w,w⟩ < 0,
⟨w,w⟩ > 0 or ⟨w,w⟩ = 0 and w ̸= 0. The norm of a vector w is defined by
∥w∥ =

√
|⟨w,w⟩|. If ⟨w, v⟩ = 0 then the vectors w and v are orthogonal.

An arbitrary curve γ : I → R4
2 can locally be timelike, spacelike or null if

respectively all of its velocity vectors γ′(s) are timelike, spacelike or null.

Let w and v be two spacelike vectors and let θ be the angel between these vectors
in R4

2.

- If Sp {v, w} is a spacelike subspace, ⟨w, v⟩ = ∥w∥ ∥v∥ cos θ.

- If Sp {v, w} is a timelike subspace, ⟨w, v⟩ = ∥w∥ ∥v∥ cosh θ.

Let w be timelike vector, v be spacelike vector. In this case, |⟨w, v⟩| = ∥w∥ ∥v∥ sinh θ.
Let {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame along the curve γ(s) in
R4

2. Then T, N, B1, B2 are the tangent, the principal normal, the first binormal
and the second binormal fields, respectively and let ∇TT is spacelike.

Let γ be a spacelike curve in R4
2, parametrized with arclength function s. Let the

vector N be spacelike, B1 and B2 timelike. In this case there exists only one Frenet
frame {T,N,B1, B2} for which γ(s) is a spacelike curve with Frenet equations

∇TT = κ1N

∇TN = −κ1T + κ2B1

∇TB1 = κ2N + κ3B2

∇TB2 = −κ3B1,(2.1)

where the vectors T, N, B1, B2 satisfy the equations:

⟨T, T ⟩ = ⟨N,N⟩ = 1, ⟨B1, B1⟩ = ⟨B2, B2⟩ = −1.(2.2)

The functions κi(s), (1 ≤ i ≤ 3) are called the curvatures of the spacelike curve
γ(s) [2].

Definition 2.7. Let’s consider the differential equation below

m∑
k=0

Pk(s)y
k(s) = g(s), (a ≤ s ≤ b).



932 T. A. Aydin and H. Kocayigit

Obviously this is m. order, linear, variable coefficient differential equation. Also,
the functions are differentiable functions in the range a ≤ s ≤ b . The Morgan-Voyce
polynomial method is developed to find approximate solutions of this equation under
certain initial or boundary conditions. Accordingly, the approximate solution can
be expressed with Morgan-Voyce polynomials as follows:

y(s) ∼= yN (s) = pN (s) =

N∑
n=0

anBn(s), (N ≥ m).

Here, the coefficients an are defined as Morgan-Voyce polynomial coefficients that
must be found. The basis of this method is based on the reduction of the unknown
function y(s) to an algebraic system with Morgan-Voyce coefficient an. For this
reduction process, the matrix form of the function y(s) and the collocation points

si = a+
b− a

N
i, (i = 0, 1, ..., N)

are used. Thus, the problem of finding the approximate solutions of a given differ-
ential equation or other functional equations becomes the problem of finding the
solution of an algebraic matrix equation. Also, n. order Morgan-Voyce polynomials
are expressed as

Bn(s) =

n∑
j=0

(
n+ j + 1
n− j

)
sj

or recursively as Bn(s) = (s+ 2)Bn−1(s)−Bn−2(s), n ≥ 2 [21].

3. The Spacelike Curves in R4
2

In this chapter, we give definitions and characterizations of the spacelike curves
by using Frenet frame in R4

2.

Theorem 3.1. Let γ : I → R4
2 be a curve parameterized by arclength. Then, the

curve γ is the spacelike curve, if

∇4
TT + λ3∇3

TT + λ2∇2
TT + λ1∇TT + λ0T = 0.(3.1)

The coefficient functions λi(s), (0 ≤ i ≤ 3) are as follows:

λ0 = κ1κ2κ3

[
1

κ3
(
κ1

κ2
)′
]′

+ κ2
1κ

2
3

λ1 = κ1κ2κ3

{[
1

κ3

[
1

κ2
(
1

κ1
)′
]′]′

− (
κ2

κ1κ3
)′ + (

κ1

κ2κ3
)′

}
+ κ1κ2(

κ1

κ2
)′

+κ1κ
2
3(

1

κ1
)′

λ2 = κ1κ2κ3

{[
1

κ3
(

1

κ1κ2
)′
]′

+

[
1

κ2κ3
(
1

κ1
)′
]′}

+ κ1κ2

[
1

κ2
(
1

κ1
)′
]′



Some Special Spacelike Curves In R4
2 933

+κ2
1 − κ2

2 + κ2
3

λ3 = κ1κ2κ3(
1

κ1κ2κ3
)′ + κ1κ2(

1

κ1κ2
)′ + κ1(

1

κ1
)′.(3.2)

Proof. By using the first of the equations (2.1) we have

N =
1

κ1
∇TT

B1 =
κ1

κ2
T +

1

κ2
∇TN

B2 = −κ2

κ3
N +

1

κ3
∇TB1.(3.3)

From the first of the equations (3.3) ∇TN = 1
κ1
∇2

TT + ( 1
κ1
)′∇TT , and so we get

B1 =
1

κ1κ2
∇2

TT +
1

κ2
(
1

κ1
)′∇TT +

κ1

κ2
T.(3.4)

And then we calculate the expression ∇TB1. With similar thinking, by using the
equations we found, we get B2 and ∇TB2. Finally, we use the equality 3.4 and the
expression ∇TB2 in the last equality of Frenet equations (2.1). Thus the proof is
complete.

Corollary 3.1. The equation (3.1) is the differential equation characterizes the
spacelike curves according to the tangent T field in R4

2. Similarly, the spacelike
curves can be characterized according to the N , B1 and B2.

4. The Special Spacelike curves in R4
2

Theorem 4.1. Let γ = γ(s) : I ⊂ R → R4
2 be a regular spacelike curve parametrized

by arc length s. Then, the curve γ is a spacelike W - curve or spacelike helix with
∇TT spacelike if the equality

∇4
TT + (κ2

1 − κ2
2 + κ2

3)∇2
TT + (κ2

1κ
2
3)T = 0

holds.

Proof. A spacelike curve γ : I → R4
2 parameterized by arc length provides the

differential equation (3.1) in R4
2. Since the curve γ is (generalized) helix or W -curve

for which κ1, κ2, κ3 are constant, with the help of the equations (3.2) the equalities

λ0 = κ2
1κ

2
3

λ2 = κ2
1 − κ2

2 + κ2
3

and λ1 = λ3 = 0 are obtained.
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Theorem 4.2. Let γ be a regular spacelike curve parameterized by arclength in
R4

2. Then γ is a spacelike slope curve if

∇4
TT − 6κ′

1

κ1
∇3

TT + λ2∇2
TT + λ1∇TT + κ2

1κ
2
3T = 0

holds, where α and β are nonzero constant and the coefficient functions λi(s), (i =
1, 2) are as follows:

λ1 = −κ′′′
1

κ1
+

10κ′′
1κ

′
2

κ1κ2
− 15κ′

1κ
′
2κ

′
3

κ1κ2κ3
+ (α2 − β2 − 1)κ1κ

′
1

λ2 = −4κ′′
1

κ1
+

15κ′
1κ

′
2

κ1κ2
− (α2 − β2 − 1)κ2

1.

Proof. A spacelike curve γ : I → R4
2 parameterized by arc length provides the

differential equation (3.1) in R4
2. Since the curve γ is slope curve for which the

curvatures κ1 ̸= 0, κ2 and κ3 satisfy the relations κ2

κ1
= α and κ3

κ1
= β. Thus, with

the help of the equations (3.2), λ1 and λ2 are obtained.

Theorem 4.3. Let γ = γ(s) : I ⊂ R → R4
2 be a unit speed spacelike curve. Then,

the curve γ is the constant curvature ratios (ccr-curve) spacelike curve if

∇4
TT − 6κ′

1

κ1
∇3

TT + λ2∇2
TT + λ1∇TT + κ2

1κ
2
3T = 0

holds, where the coefficient functions λi(s), (i = 1, 2) are as follows:

λ1 = −κ′′′
1

κ1
+

10κ′′
1κ

′
2

κ1κ2
− 15κ′

1κ
′
2κ

′
3

κ1κ2κ3
− (κ1κ

′
1 − κ2κ

′
2 + κ3κ

′
3)

λ2 = −4κ′′
1

κ1
+

15κ′
1κ

′
2

κ1κ2
+ κ2

1 − κ2
2 + κ2

3.

Proof. A spacelike curve γ : I → R4
2 parameterized with arc length provides the

differential equation (3.1) in R4
2. Since the curve γ is the constant curvature ratios

(ccr-curve) space curve, the κ2

κ1
and κ3

κ2
are constant functions. Thus, with the help

of the equations (3.2), λ1 and λ2 are obtained.

Theorem 4.4. A curve γ = γ(s) : I ⊂ R → R4
2 is spacelike spherical, i.e., it is

contained in a sphere of radius r, if

ρ′′′ + [κ3(
1

κ2κ3
)′ + (

1

κ2
)′]κ2ρ

′′

+[κ2κ3(
1

κ3
(
1

κ2
)′)′ + κ2

3 − κ2
2]ρ

′ + κ2κ3(
κ2

κ3
)′ρ = 0,(4.1)

where ρ = 1
κ1
.
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Proof. The proof here is similar to that for spherical curves in R4. It consists of
obtaining information thanks to successive derivatives of the expression < γ(s) −
m, γ(s)−m >= r2, where m is the center of the sphere.

Lemma 4.1. A curve γ = γ(s) : I ⊂ R → R4
2 is spacelike spherical constant

curvature ratios (ccr-curve), i.e., it is contained in a sphere of radius r, if

ρ′′′ + [κ3(
1

κ2κ3
)′ + (

1

κ2
)′]κ2ρ

′′ + [κ2κ3(
1

κ3
(
1

κ2
)′)′ + κ2

3 − κ2
2]ρ

′ = 0.(4.2)

Proof. In this case, the equation (4.1) is rearranged by taking κ2

κ1
and κ3

κ2
as constant

functions. Thus, the equality (4.2) is obtained.

Lemma 4.2. A curve γ = γ(s) : I ⊂ R → R4
2 is spacelike spherical slope curve, if

ρ2ρ′′′ + 4ρρ′ρ′′ + (ρ′)3 + (β2 − α2)ρ′ = 0.(4.3)

Proof. In this case, we can rewrite (4.1) in terms of curvature, κ1, κ2 = ακ1 and
κ3 = βκ1, where α, β are constants. Thus, the equality (4.3) is obtained.

5. The Spacelike Slant Helix in R4
2

Theorem 5.1. Let γ : I → R4
2 be a regular spacelike curve given with arc-length

parameter s and {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame at the point
γ(s) of the curve γ. If the curve γ is a spacelike slant helix, their position vector
satisfies the equation

κ2
2 − κ2

1

κ1κ2κ3
µ′′
1 + [(

κ2

κ1κ3
)′ − 1

κ3
(
κ1

κ2
)′ − (

κ1

κ2κ3
)′]µ′

1

−[(
1

κ3
(
κ1

κ2
)′)′ +

κ1κ3

κ2
]µ1 = 0,(5.1)

where µ1 is the coefficient function of the tangent of a spacelike constant vector
taken in the fixed direction studied.

Proof. We call γ as spacelike slant helix if its principial normal vector makes a
constant angle with a fixed direction. From this definition of the slant helix we
write

< N,U >= constant.(5.2)

where U is a spacelike constant vector and we can compose U as

U = µ1T + µ2N + µ3B1 + µ4B2.(5.3)

The coefficient functions are µ1 =< T,U >, µ2 =< N,U >, µ3 = − < B1, U >
, µ4 = − < B2, U > . Because the vector U is constant, differentiation of the
equation 5.3 and considering Frenet equations, we have

(µ′
1 − κ1µ2)T + (κ1µ1 + µ′

2 + κ2µ3)N + (κ2µ2 + µ′
3 − κ3µ4)B1

+(κ3µ3 + µ′
4)B2 = 0.(5.4)
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Also, the function µ2 is constant from the equality 5.2, and so µ′
2(s) = 0 for all s.

Then we find the following system

µ′
1 − κ1µ2 = 0

κ1µ1 + κ2µ3 = 0

κ2µ2 + µ′
3 − κ3µ4 = 0

κ3µ3 + µ′
4 = 0.(5.5)

From the third equation of the system of equation 5.5 µ4 = κ2

κ3
µ2 +

1
κ3
µ′
3, and so

we get

[
κ2

κ3
µ2 +

1

κ3
µ′
3]

′ = −κ3µ3.(5.6)

By using the equalities µ2 = 1
κ1
µ′
1 and µ3 = −κ1

κ2
µ1 in the equation 5.6, we obtain

the equation 5.1 . Thus the proof is completed.

Corollary 5.1. The equation (5.1) is the differential equation characterizes the
spacelike slant helix according to the coefficient function µ1 in R4

2. Obviously, the
spacelike slant helix can be characterized similarly according to the other coefficient
functions µ3 and µ4,but, since µ2 is already fixed, a characterization based on µ2

cannot be given.

Theorem 5.2. Let γ : I → R4
2 be a regular spacelike curve given by arc-length

parameter s and {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame at the point
γ(s) of the curve γ. If the curve γ is a spacelike slant helix, their position vector
satisfy the equations

κ2
2 − κ2

1

κ2
1κ3

µ′′
3 + [(

κ2
2

κ2
1κ3

)′ +
κ2

κ3κ1
(
κ2

κ1
)′ − (

1

κ3
)′]µ′

3 − {
[

κ2

κ3κ1
(
κ2

κ1
)′
]′

− κ3}µ3 = 0,

κ2
1 − κ2

2

κ2
1κ3

µ′′
4 + [

1

κ3
(
1

κ3
)′ − κ2

κ1κ3
(

κ2

κ1κ3
)′]µ′

4 + µ4 = 0,

where µ3 and µ4 are the coefficient functions of the first binormal B1 and the second
binormal B2, respectively, of a spacelike constant vector taken in the fixed direction
studied.

Proof. It is obvious from proof of Theorem 5.1.

6. The Spacelike-B1 Slant Helix in R4
2

Theorem 6.1. Let γ : I → R4
2 be a regular spacelike curve given by arc-length

parameter s and {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame at the point
γ(s) of the curve γ. If the curve γ is a spacelike-B1 slant helix, their position vector
satisfy the equation

κ2
3 − κ2

2

κ2
1κ

3
3

µ′′
1 + [

1

κ1
(
1

κ1
)′ − κ2

κ1κ3
(

κ2

κ1κ3
)′]µ′

1 + µ1 = 0,(6.1)
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where µ1 is the coefficient function of the tangent of a spacelike constant vector
taken in the fixed direction studied.

Proof. We call γ as B1 slant helix if its first binormal vector makes a constant angle
with a fixed direction. From this definition of the B1 slant helix we can write

< B1, U >= constant,(6.2)

where U is a spacelike constant vector and we can compose U as

U = µ1T + µ2N + µ3B1 + µ4B2.(6.3)

The coefficient functions are µ1 =< T,U >, µ2 =< N,U >, µ3 = − < B1, U >
, µ4 = − < B2, U > in R4

2. Because the vector U is constant, differentiation of the
equation 6.3 and considering Frenet equations, we have

(µ′
1 − κ1µ2)T + (κ1µ1 + µ′

2 + κ2µ3)N + (κ2µ2 + µ′
3 − κ3µ4)B1

+(κ3µ3 + µ′
4)B2 = 0.(6.4)

Also, the function µ3 is constant from the equality 6.2, and so µ′
3(s) = 0 for all s.

Then we find the following system of ordinary differential equations

µ′
1 − κ1µ2 = 0

κ1µ1 + µ′
2 + κ2µ3 = 0

κ2µ2 − κ3µ4 = 0

κ3µ3 + µ′
4 = 0.(6.5)

From the second equation of this system of equation, the equality

µ3 = −κ1

κ2
µ1 −

1

κ2
µ′
2(6.6)

is obtained. By using the equalities µ2 = 1
κ1
µ′
1, µ3 = − 1

κ3
µ′
4 and µ4 = −κ2

κ3
µ2 in

the equation 6.6, we obtain the equation 6.1. Thus the proof is completed.

Corollary 6.1. The equation (6.1) is the differential equation characterizes the
spacelike-B1 slant helix according to the coefficient function µ1 in R4

2. Obviously,
the spacelike-B1 slant helix can be characterized similarly according to the other
coefficient functions µ2 and µ4,but, since µ3 is already fixed, a characterization
based on µ3 cannot be given.

Theorem 6.2. Let γ : I → R4
2 be a regular spacelike curve given by arc-length

parameter s and {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame at the point
γ(s) of the curve γ. If the curve γ is a spacelike-B1 slant helix, their position vector
satisfy the equations

κ2
2 + κ2

3

κ1κ2
3

µ′′
2 + [(

κ2
2

κ1κ2
3

)′ +
κ2

κ1κ3
(
κ2

κ3
)′ + (

1

κ1
)′]µ′

2 + {
[

κ2

κ3κ1
(
κ2

κ3
)′
]′

− κ1}µ2 = 0,

κ2
2 − κ2

3

κ1κ2κ3
µ′′
4 + [(

κ2

κ1κ3
)′ − (

κ3

κ1κ2
)′ − 1

κ1
(
κ3

κ2
)′]µ′

4 − {
[
1

κ1
(
κ3

κ2
)′
]′

+
κ1κ3

κ2
}µ4 = 0,
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where µ2 and µ4 are the coefficient functions of the principal normal N and the
second binormal B2, respectively, of a spacelike constant vector taken in the fixed
direction studied.

Proof. It is obvious from proof of Theorem 6.1.

7. Approximate solution with Morgan-Voyce polynomial approach

In this section, approximate solution of the differential equation 6.1 that char-
acterizes the spacelike-B1 slant helix based on the coefficient µ1, will be obtained
by the Morgan-Voyce polynomial approximation. Similar solution can be applied
for characterizations linked to the coefficients µ2 and µ4.

Firstly, the differential equation (6.1) is generally expressed as follows:

2∑
k=0

Pk(s)y
(k)(s) = g(s),(7.1)

for the coefficient functions

P2(s) =
κ2
3 − κ2

2

κ2
1κ

3
3

, P1(s) =
1

κ1
(
1

κ1
)′− κ2

κ1κ3
(

κ2

κ1κ3
)′, P0(s) = 1, y(s) = µ1(s), g(s) = 0.

Suppose that this equation has an approximate solution in (0 ≤ s ≤ 1), under the
initial conditions y(k)(0) = ωk, (k = 0, 1), in the form of Morgan-Voyce polynomials
as

y(s) =

N∑
n=0

anBn(s).(7.2)

Let N = 3 for convenience. Here, Pk and g functions are known functions and ω is
suitable constant, an are unknown coefficients, Bn are Morgan-Voyce polynomials.
The first four of the Morgan-Voyce polynomials are as follows:

B0(s) = 1, B1(s) = s+ 2, B2(s) = s2 + 4s+ 3, B3(s) = s3 + 6s2 + 10s+ 4.

Basic matrix relations First of all, the approximate solution can be converted
into matrix form y(s) = B(s)A, with

B(s) =
[
B0(s) B1(s) B2(s) B3(s)

]
, A =

[
a0 a1 a2 a3

]
for N = 3. On the other hand, there is a matrix relation B(s) = S(s)RT for

S(s) =
[
1 s s2 s3

]
, R =


1 0 0 0
2 1 0 0
3 4 1 0
4 10 6 1
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from the definition of polynomial [21]. Also, it is clearly seen that the relation
between the matrix B(s) and its derivative B′(s) is B′(s) = S′(s)RT and that
repeating the process B(k)(s) = S(s)(TT )kRT , where

T =


0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0


and T 0 is unite matrix. y(k)(s) = S(s)(TT )kRTA are obtained with the help of
these matrices. Also, the matrix relations of the differential part are obtained in

the form
2∑

k=0

PkY
(k) = G by using standard collocation points si =

1
3 i (i = 0, 1, 2, 3),

in the equation 7.1, in the range of 0 ≤ s ≤ 1 for N = 3. The matrices

Pk = diag[ Pk(0) Pk(
1
3 ) Pk(

2
3 ) Pk(1) ],

Y (k) = [ y(k)(0) y(k)( 13 ) y(k)( 23 ) y(k)(1) ]T

are obvious and the matrix W =
2∑

k=0

PkS(s)(T
T )kRT is calculated, for WA = G

and the equation is written as the augmented matrix [W ;G].

Matrix calculations for initial conditions Under the initial conditions given
as y(0) = 0, y′(0) = 1 the matrix expression of the conditions is calculated as

U0 =
[
1 2 3 4

]
, U1 =

[
0 1 4 10

]
.

The Solution If the matrix form of conditions is used in the matrix form [W ;G]
the following matrix is obtained:

[W ∗;G∗] =


1 ζ01 ζ02 ζ03 ; 0
1 2 3 4 ; 0
0 1 4 10 ; 1
1 ζ31 ζ32 ζ33 ; 0

 ,

where

ζ01 = 2 + P1(0),

ζ02 = 3 + 4P1(0) + 2P2(0),

ζ03 = 4 + 10P1(0) + 12P2(0),

ζ31 = 3 + P1(1),

ζ32 = 8 + 6P1(1) + 2P2(1),

ζ33 = 21 + 25P1(1) + 18P2(1).
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Finally, with the help of equality A = (W ∗)−1G, the unknowns an are calculated
as follows:

a0 = − 8P2(0)[2P1(1)− 3P2(1) + 3]− 2P1(0)[52P2(1) + 47P1(1) + 25]

−P1(0)[40P1(1) + 52P2(1) + 18]− P2(0)[6P1(1) + 12P2(1) + 2]

a1 =
2P2(0)[11P1(1)− 6P2(1) + 13]− 2P1(0)[26P2(1) + 9 + 20P1(1)]

−P1(0)[40P1(1) + 52P2(1) + 18]− P2(0)[6P1(1) + 12P2(1) + 2]

a2 = − [10P1(0) + 12P1(1)][P2(0) + 1]

−P1(0)[40P1(1) + 52P2(1) + 18]− P2(0)[6P1(1) + 12P2(1) + 2]

a3 =
[4P1(0) + 2P1(1)][P2(0) + 1]

−P1(0)[40P1(1) + 52P2(1) + 18]− P2(0)[6P1(1) + 12P2(1) + 2]
.

If these values are substituted in the equation 7.2, the solution is obtained as
follows:

y(s) = µ1(s) = a0 + a1(s+ 2) + a2(s
2 + 4s+ 3) + a3(s

3 + 6s2 + 10s+ 4).

Corollary 7.1. The equations found for the special curves we study are generally
homogeneous, linear differential equations with variable coefficients. So the solution
method we present can be applied to other equations as well.

Example 7.1. Let’s find the coefficient µ1 for the spacelike-B1 slant helix given with its
curvatures κ1 = 1

s+1
, κ2
κ3

= sin s. The vector position of such a curve provides the following
differential equation

[(1 + s) cos s]2µ′′
1 + {[cos s− (1 + s) sin s](1 + s) cos s}µ′

1 + µ1 = 0.

If the method presented is applied for

P2(s) = [(1+s) cos s]2, P1(s) = [cos s−(1+s) sin s](1+s) cos s, P0(s) = 1, y(s) = µ(s), g = 0

the approximate solution is calculated under the initial conditions given as y(0) = 0,
y′(0) = 1, in the range of 0 ≤ s ≤ 1 for N = 3. Firstly, from the matrix

(W ∗)−1 =


−0.168 04 1. 037 1 −2. 476 1 0.130 91
0.668 04 −0.537 12 0.976 06 −0.130 91
−0.643 44 0.587 34 0.367 4 0.05 610 6
0.190 57 −0.181 22 −0.144 57 −0.009 351


and A = (W ∗)−1G, the unknowns an are calculated as follows:

a0 = −2. 476 1

a1 = 0.976 06

a2 = 0.367 4

a3 = −0.144 57.

Thus, the solution is obtained as

µ(s) = −0.144 57s3 − 0.500 02s2 + 0.999 96s− 0.000 06.
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8. Conclusion

In this study, the characterizations are given for the spacelike curves according
to the Frenet frame in R4

2. These characterizations are interpreted for some special
curves such as W -curve, Ccr curve, slope curve based on curvature properties. Also,
the spacelike spherical curve is presented with a differential equation in R4

2 and the
spacelike sphericity of the special curves discussed.

In addition, the spacelike slant helix and the spacelike-B2 slant helix concepts are
defined in R4

2 and the differential equations for vector positions are presented. These
equations are homogeneous, linear, differential equations with variable coefficients.
The Morgan Voyce matrix collocation method is given for the approximate solution
of such differential equations. This method is applied in the differential equation
that characterizes the spacelike-B2 slant helix. An example has also been presented.
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